Formal degree of regular supercuspidals
Supercuspidal representations are usually infinite-dimensional, so the size of such a representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga, Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its L -parameter o...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2024-01, Vol.26 (10), p.3685-3737 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3737 |
---|---|
container_issue | 10 |
container_start_page | 3685 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 26 |
creator | Schwein, David |
description | Supercuspidal representations are usually infinite-dimensional, so the size of such a representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga, Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its L -parameter only. Our first main result is to compute the formal degrees of the supercuspidal representations constructed by Yu. Our second result, using the first, is to verify that Kaletha’s regular supercuspidal L -packets satisfy the conjecture. |
doi_str_mv | 10.4171/jems/1412 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1412</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c119t-6f22f3b9e797daa7e16bc319667cf9c8d6ea25f6e7c7dd0a54aac6495a623c963</originalsourceid><addsrcrecordid>eNo9z01LAzEUheEgCtbqwn8wO3ExNjcfN81SilWh4EbX4Ta5KS0zzJA4C_-9Doqr96wOPELcgnww4GB14r6uwIA6Ewsw2rZ-jfr8f1t7Ka5qPUkJzhq9EHfbofTUNYkPhbkZclP4MHVUmjqNXOJUx2Oirl6Li_wTvvnrUnxsn943L-3u7fl187hrI4D_bDErlfXes_MuETkG3EcNHtHF7OM6IZOyGdlFl5Ika4giGm8JlY4e9VLc__7GMtRaOIexHHsqXwFkmIVhFoZZqL8B8cVESQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Formal degree of regular supercuspidals</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Schwein, David</creator><creatorcontrib>Schwein, David</creatorcontrib><description>Supercuspidal representations are usually infinite-dimensional, so the size of such a representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga, Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its L -parameter only. Our first main result is to compute the formal degrees of the supercuspidal representations constructed by Yu. Our second result, using the first, is to verify that Kaletha’s regular supercuspidal L -packets satisfy the conjecture.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1412</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-01, Vol.26 (10), p.3685-3737</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9679-3030</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Schwein, David</creatorcontrib><title>Formal degree of regular supercuspidals</title><title>Journal of the European Mathematical Society : JEMS</title><description>Supercuspidal representations are usually infinite-dimensional, so the size of such a representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga, Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its L -parameter only. Our first main result is to compute the formal degrees of the supercuspidal representations constructed by Yu. Our second result, using the first, is to verify that Kaletha’s regular supercuspidal L -packets satisfy the conjecture.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9z01LAzEUheEgCtbqwn8wO3ExNjcfN81SilWh4EbX4Ta5KS0zzJA4C_-9Doqr96wOPELcgnww4GB14r6uwIA6Ewsw2rZ-jfr8f1t7Ka5qPUkJzhq9EHfbofTUNYkPhbkZclP4MHVUmjqNXOJUx2Oirl6Li_wTvvnrUnxsn943L-3u7fl187hrI4D_bDErlfXes_MuETkG3EcNHtHF7OM6IZOyGdlFl5Ika4giGm8JlY4e9VLc__7GMtRaOIexHHsqXwFkmIVhFoZZqL8B8cVESQ</recordid><startdate>20240122</startdate><enddate>20240122</enddate><creator>Schwein, David</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9679-3030</orcidid></search><sort><creationdate>20240122</creationdate><title>Formal degree of regular supercuspidals</title><author>Schwein, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c119t-6f22f3b9e797daa7e16bc319667cf9c8d6ea25f6e7c7dd0a54aac6495a623c963</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schwein, David</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schwein, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Formal degree of regular supercuspidals</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-01-22</date><risdate>2024</risdate><volume>26</volume><issue>10</issue><spage>3685</spage><epage>3737</epage><pages>3685-3737</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>Supercuspidal representations are usually infinite-dimensional, so the size of such a representation cannot be measured by its dimension; the formal degree is a better alternative. Hiraga, Ichino, and Ikeda conjectured a formula for the formal degree of a supercuspidal in terms of its L -parameter only. Our first main result is to compute the formal degrees of the supercuspidal representations constructed by Yu. Our second result, using the first, is to verify that Kaletha’s regular supercuspidal L -packets satisfy the conjecture.</abstract><doi>10.4171/jems/1412</doi><tpages>53</tpages><orcidid>https://orcid.org/0000-0001-9679-3030</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2024-01, Vol.26 (10), p.3685-3737 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1412 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Formal degree of regular supercuspidals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T09%3A40%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Formal%20degree%20of%20regular%20supercuspidals&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Schwein,%20David&rft.date=2024-01-22&rft.volume=26&rft.issue=10&rft.spage=3685&rft.epage=3737&rft.pages=3685-3737&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1412&rft_dat=%3Ccrossref%3E10_4171_jems_1412%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |