Deletion-contraction triangles for Hausel–Proudfoot varieties

To a graph, Hausel and Proudfoot associate two complex manifolds, \mathfrak{B} and \mathfrak{D} , which behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs bundles. For instance, \mathfrak{B} is a moduli space of microlocal sheaves, which generalize local syst...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2024-01, Vol.26 (7), p.2565-2653
Hauptverfasser: Dancso, Zsuzsanna, McBreen, Michael, Shende, Vivek
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2653
container_issue 7
container_start_page 2565
container_title Journal of the European Mathematical Society : JEMS
container_volume 26
creator Dancso, Zsuzsanna
McBreen, Michael
Shende, Vivek
description To a graph, Hausel and Proudfoot associate two complex manifolds, \mathfrak{B} and \mathfrak{D} , which behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs bundles. For instance, \mathfrak{B} is a moduli space of microlocal sheaves, which generalize local systems, and \mathfrak{D} carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for \mathfrak{B} is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of \mathfrak{B} . There is a corresponding triangle for \mathfrak{D} . Finally, we prove that \mathfrak{B} and \mathfrak{D} are diffeomorphic, the diffeomorphism carries the weight filtration on the cohomology of \mathfrak{B} to the perverse Leray filtration on the cohomology of \mathfrak{D} , and all these structures are compatible with the deletion-contraction triangles.
doi_str_mv 10.4171/jems/1369
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c154t-2933939097dd0fd3229e75c03add1c3bb18a2d99ebce06c50854de6f1f73cd4e3</originalsourceid><addsrcrecordid>eNo9j8FKxDAURYMoOI4u_INuXcTJ60uaZiUyOo4woAtdlzR5kQ6dRpKO4M5_8A_9Ei2Kq3s298Bh7BzEpQQNiy3t8gKwMgdsBhIVN3WFh_-s1DE7yXkrBGglccaubqinsYsDd3EYk3UTF2Pq7PDSUy5CTMXa7jP1Xx-fjynufYhxLN5s6n5ulE_ZUbB9prO_nbPn1e3Tcs03D3f3y-sNd6DkyEuDaNAIo70XwWNZGtLKCbTeg8O2hdqW3hhqHYnKKVEr6akKEDQ6Lwnn7OLX61LMOVFoXlO3s-m9AdFM5c1U3kzl-A3rvU6d</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Deletion-contraction triangles for Hausel–Proudfoot varieties</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</creator><creatorcontrib>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</creatorcontrib><description>To a graph, Hausel and Proudfoot associate two complex manifolds, \mathfrak{B} and \mathfrak{D} , which behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs bundles. For instance, \mathfrak{B} is a moduli space of microlocal sheaves, which generalize local systems, and \mathfrak{D} carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for \mathfrak{B} is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of \mathfrak{B} . There is a corresponding triangle for \mathfrak{D} . Finally, we prove that \mathfrak{B} and \mathfrak{D} are diffeomorphic, the diffeomorphism carries the weight filtration on the cohomology of \mathfrak{B} to the perverse Leray filtration on the cohomology of \mathfrak{D} , and all these structures are compatible with the deletion-contraction triangles.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1369</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2024-01, Vol.26 (7), p.2565-2653</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27903,27904</link.rule.ids></links><search><creatorcontrib>Dancso, Zsuzsanna</creatorcontrib><creatorcontrib>McBreen, Michael</creatorcontrib><creatorcontrib>Shende, Vivek</creatorcontrib><title>Deletion-contraction triangles for Hausel–Proudfoot varieties</title><title>Journal of the European Mathematical Society : JEMS</title><description>To a graph, Hausel and Proudfoot associate two complex manifolds, \mathfrak{B} and \mathfrak{D} , which behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs bundles. For instance, \mathfrak{B} is a moduli space of microlocal sheaves, which generalize local systems, and \mathfrak{D} carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for \mathfrak{B} is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of \mathfrak{B} . There is a corresponding triangle for \mathfrak{D} . Finally, we prove that \mathfrak{B} and \mathfrak{D} are diffeomorphic, the diffeomorphism carries the weight filtration on the cohomology of \mathfrak{B} to the perverse Leray filtration on the cohomology of \mathfrak{D} , and all these structures are compatible with the deletion-contraction triangles.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNo9j8FKxDAURYMoOI4u_INuXcTJ60uaZiUyOo4woAtdlzR5kQ6dRpKO4M5_8A_9Ei2Kq3s298Bh7BzEpQQNiy3t8gKwMgdsBhIVN3WFh_-s1DE7yXkrBGglccaubqinsYsDd3EYk3UTF2Pq7PDSUy5CTMXa7jP1Xx-fjynufYhxLN5s6n5ulE_ZUbB9prO_nbPn1e3Tcs03D3f3y-sNd6DkyEuDaNAIo70XwWNZGtLKCbTeg8O2hdqW3hhqHYnKKVEr6akKEDQ6Lwnn7OLX61LMOVFoXlO3s-m9AdFM5c1U3kzl-A3rvU6d</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Dancso, Zsuzsanna</creator><creator>McBreen, Michael</creator><creator>Shende, Vivek</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240101</creationdate><title>Deletion-contraction triangles for Hausel–Proudfoot varieties</title><author>Dancso, Zsuzsanna ; McBreen, Michael ; Shende, Vivek</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c154t-2933939097dd0fd3229e75c03add1c3bb18a2d99ebce06c50854de6f1f73cd4e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dancso, Zsuzsanna</creatorcontrib><creatorcontrib>McBreen, Michael</creatorcontrib><creatorcontrib>Shende, Vivek</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dancso, Zsuzsanna</au><au>McBreen, Michael</au><au>Shende, Vivek</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deletion-contraction triangles for Hausel–Proudfoot varieties</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>26</volume><issue>7</issue><spage>2565</spage><epage>2653</epage><pages>2565-2653</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>To a graph, Hausel and Proudfoot associate two complex manifolds, \mathfrak{B} and \mathfrak{D} , which behave, respectively, like moduli of local systems on a Riemann surface and moduli of Higgs bundles. For instance, \mathfrak{B} is a moduli space of microlocal sheaves, which generalize local systems, and \mathfrak{D} carries the structure of a complex integrable system. We show the Euler characteristics of these varieties count spanning subtrees of the graph, and the point-count over a finite field for \mathfrak{B} is a generating polynomial for spanning subgraphs. This polynomial satisfies a deletion-contraction relation, which we lift to a deletion-contraction exact triangle for the cohomology of \mathfrak{B} . There is a corresponding triangle for \mathfrak{D} . Finally, we prove that \mathfrak{B} and \mathfrak{D} are diffeomorphic, the diffeomorphism carries the weight filtration on the cohomology of \mathfrak{B} to the perverse Leray filtration on the cohomology of \mathfrak{D} , and all these structures are compatible with the deletion-contraction triangles.</abstract><doi>10.4171/jems/1369</doi><tpages>89</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2024-01, Vol.26 (7), p.2565-2653
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1369
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Deletion-contraction triangles for Hausel–Proudfoot varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A49%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deletion-contraction%20triangles%20for%20Hausel%E2%80%93Proudfoot%20varieties&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Dancso,%20Zsuzsanna&rft.date=2024-01-01&rft.volume=26&rft.issue=7&rft.spage=2565&rft.epage=2653&rft.pages=2565-2653&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1369&rft_dat=%3Ccrossref%3E10_4171_jems_1369%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true