A subspace theorem for manifolds

We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for dia...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2023-05, Vol.26 (11), p.4273-4313
Hauptverfasser: Breuillard, Emmanuel, de Saxcé, Nicolas
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4313
container_issue 11
container_start_page 4273
container_title Journal of the European Mathematical Society : JEMS
container_volume 26
creator Breuillard, Emmanuel
de Saxcé, Nicolas
description We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.
doi_str_mv 10.4171/JEMS/1346
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_1346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1036-7362458f44a22d4bc2f9995eb7b01b246011f2ef76aa5891d64c59016e5a0cd13</originalsourceid><addsrcrecordid>eNqNkMFKAzEURYMoWKsL_yBbF2PzkpdksiylWqXSRXUdkswLtnSckujCv5eh4trVvYvDhXMZuwVxj2Bh9rx82c5AoTljE0ClG9cadf7Xtb5kV7XuhQCrUU0Yn_P6FesxJOKf7zQU6nkeCu_Dxy4Ph65es4scDpVufnPK3h6Wr4tVs948Pi3m6yaBUKaxykjUbUYMUnYYk8zOOU3RRgFRohEAWVK2JgTdOugMJu0EGNJBpA7UlN2ddlMZai2U_bHs-lC-PQg_qvk99dWPav9gxxtO7A-dIky5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A subspace theorem for manifolds</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Breuillard, Emmanuel ; de Saxcé, Nicolas</creator><creatorcontrib>Breuillard, Emmanuel ; de Saxcé, Nicolas</creatorcontrib><description>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/1346</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2023-05, Vol.26 (11), p.4273-4313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Breuillard, Emmanuel</creatorcontrib><creatorcontrib>de Saxcé, Nicolas</creatorcontrib><title>A subspace theorem for manifolds</title><title>Journal of the European Mathematical Society : JEMS</title><description>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEURYMoWKsL_yBbF2PzkpdksiylWqXSRXUdkswLtnSckujCv5eh4trVvYvDhXMZuwVxj2Bh9rx82c5AoTljE0ClG9cadf7Xtb5kV7XuhQCrUU0Yn_P6FesxJOKf7zQU6nkeCu_Dxy4Ph65es4scDpVufnPK3h6Wr4tVs948Pi3m6yaBUKaxykjUbUYMUnYYk8zOOU3RRgFRohEAWVK2JgTdOugMJu0EGNJBpA7UlN2ddlMZai2U_bHs-lC-PQg_qvk99dWPav9gxxtO7A-dIky5</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Breuillard, Emmanuel</creator><creator>de Saxcé, Nicolas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230503</creationdate><title>A subspace theorem for manifolds</title><author>Breuillard, Emmanuel ; de Saxcé, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1036-7362458f44a22d4bc2f9995eb7b01b246011f2ef76aa5891d64c59016e5a0cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breuillard, Emmanuel</creatorcontrib><creatorcontrib>de Saxcé, Nicolas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breuillard, Emmanuel</au><au>de Saxcé, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace theorem for manifolds</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2023-05-03</date><risdate>2023</risdate><volume>26</volume><issue>11</issue><spage>4273</spage><epage>4313</epage><pages>4273-4313</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</abstract><doi>10.4171/JEMS/1346</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2023-05, Vol.26 (11), p.4273-4313
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1346
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title A subspace theorem for manifolds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20theorem%20for%20manifolds&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Breuillard,%20Emmanuel&rft.date=2023-05-03&rft.volume=26&rft.issue=11&rft.spage=4273&rft.epage=4313&rft.pages=4273-4313&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/1346&rft_dat=%3Ccrossref%3E10_4171_JEMS_1346%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true