A subspace theorem for manifolds
We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for dia...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2023-05, Vol.26 (11), p.4273-4313 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4313 |
---|---|
container_issue | 11 |
container_start_page | 4273 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 26 |
creator | Breuillard, Emmanuel de Saxcé, Nicolas |
description | We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows. |
doi_str_mv | 10.4171/JEMS/1346 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1346</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_JEMS_1346</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1036-7362458f44a22d4bc2f9995eb7b01b246011f2ef76aa5891d64c59016e5a0cd13</originalsourceid><addsrcrecordid>eNqNkMFKAzEURYMoWKsL_yBbF2PzkpdksiylWqXSRXUdkswLtnSckujCv5eh4trVvYvDhXMZuwVxj2Bh9rx82c5AoTljE0ClG9cadf7Xtb5kV7XuhQCrUU0Yn_P6FesxJOKf7zQU6nkeCu_Dxy4Ph65es4scDpVufnPK3h6Wr4tVs948Pi3m6yaBUKaxykjUbUYMUnYYk8zOOU3RRgFRohEAWVK2JgTdOugMJu0EGNJBpA7UlN2ddlMZai2U_bHs-lC-PQg_qvk99dWPav9gxxtO7A-dIky5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A subspace theorem for manifolds</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Breuillard, Emmanuel ; de Saxcé, Nicolas</creator><creatorcontrib>Breuillard, Emmanuel ; de Saxcé, Nicolas</creatorcontrib><description>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/JEMS/1346</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2023-05, Vol.26 (11), p.4273-4313</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,862,27907,27908</link.rule.ids></links><search><creatorcontrib>Breuillard, Emmanuel</creatorcontrib><creatorcontrib>de Saxcé, Nicolas</creatorcontrib><title>A subspace theorem for manifolds</title><title>Journal of the European Mathematical Society : JEMS</title><description>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqNkMFKAzEURYMoWKsL_yBbF2PzkpdksiylWqXSRXUdkswLtnSckujCv5eh4trVvYvDhXMZuwVxj2Bh9rx82c5AoTljE0ClG9cadf7Xtb5kV7XuhQCrUU0Yn_P6FesxJOKf7zQU6nkeCu_Dxy4Ph65es4scDpVufnPK3h6Wr4tVs948Pi3m6yaBUKaxykjUbUYMUnYYk8zOOU3RRgFRohEAWVK2JgTdOugMJu0EGNJBpA7UlN2ddlMZai2U_bHs-lC-PQg_qvk99dWPav9gxxtO7A-dIky5</recordid><startdate>20230503</startdate><enddate>20230503</enddate><creator>Breuillard, Emmanuel</creator><creator>de Saxcé, Nicolas</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20230503</creationdate><title>A subspace theorem for manifolds</title><author>Breuillard, Emmanuel ; de Saxcé, Nicolas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1036-7362458f44a22d4bc2f9995eb7b01b246011f2ef76aa5891d64c59016e5a0cd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breuillard, Emmanuel</creatorcontrib><creatorcontrib>de Saxcé, Nicolas</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breuillard, Emmanuel</au><au>de Saxcé, Nicolas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A subspace theorem for manifolds</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2023-05-03</date><risdate>2023</risdate><volume>26</volume><issue>11</issue><spage>4273</spage><epage>4313</epage><pages>4273-4313</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>We prove a theorem that generalizes Schmidt’s Subspace Theorem in the context of metric diophantine approximation. To do so we reformulate the Subspace Theorem in the framework of homogeneous dynamics by introducing and studying a slope formalism and the corresponding notion of semistability for diagonal flows.</abstract><doi>10.4171/JEMS/1346</doi><tpages>41</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2023-05, Vol.26 (11), p.4273-4313 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1346 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | A subspace theorem for manifolds |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20subspace%20theorem%20for%20manifolds&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Breuillard,%20Emmanuel&rft.date=2023-05-03&rft.volume=26&rft.issue=11&rft.spage=4273&rft.epage=4313&rft.pages=4273-4313&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/JEMS/1346&rft_dat=%3Ccrossref%3E10_4171_JEMS_1346%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |