Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture

In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (4), p.1295-1331
Hauptverfasser: Furusawa, Masaaki, Morimoto, Kazuki
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1331
container_issue 4
container_start_page 1295
container_title Journal of the European Mathematical Society : JEMS
container_volume 23
creator Furusawa, Masaaki
Morimoto, Kazuki
description In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representation of \mathrm{SO} (2) is trivial. Let \pi be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field F whose local component \pi_v at any archimedean place v of F is a discrete series representation. Let E be a quadratic extension of F and suppose that the special Bessel period corresponding to E does not vanish identically on \pi . Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value L (1/2, \pi) L (1/2, \pi\times\chi_E ) , where \chi_E denotes the quadratic character corresponding to E . Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.
doi_str_mv 10.4171/jems/1034
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</originalsourceid><addsrcrecordid>eNpNkDFOwzAYhS0EEqUwcAOvDKF2bMfxSCsoSJVACGbL-f0bEqVJZZeBrXdg4iK9ADfpSWgEQkzvDe896X2EnHN2KbnmkwaXacKZkAdkxKVQmSkLcfjnlTomJyk1jHGtpBgR-4ih7tDTl7avXEvnsU9pt_l4iC45T6HvGoT1W0TadzStEOp9aIopYUtXGOveJ-o6T6dfW3jFiHG3-Uz_aqfkKLg24dmvjsnzzfXT7DZb3M_vZleLDAST60yrogzOsTKUFQYBuchNpbCQYAx4DlrkQrpcGg3KgCiVkFAVUgLzHvQ-PiYXP7swHIgY7CrWSxffLWd2IGMHMnYgI74Biipa6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Furusawa, Masaaki ; Morimoto, Kazuki</creator><creatorcontrib>Furusawa, Masaaki ; Morimoto, Kazuki</creatorcontrib><description>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representation of \mathrm{SO} (2) is trivial. Let \pi be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field F whose local component \pi_v at any archimedean place v of F is a discrete series representation. Let E be a quadratic extension of F and suppose that the special Bessel period corresponding to E does not vanish identically on \pi . Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value L (1/2, \pi) L (1/2, \pi\times\chi_E ) , where \chi_E denotes the quadratic character corresponding to E . Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1034</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2021-01, Vol.23 (4), p.1295-1331</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Furusawa, Masaaki</creatorcontrib><creatorcontrib>Morimoto, Kazuki</creatorcontrib><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><title>Journal of the European Mathematical Society : JEMS</title><description>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representation of \mathrm{SO} (2) is trivial. Let \pi be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field F whose local component \pi_v at any archimedean place v of F is a discrete series representation. Let E be a quadratic extension of F and suppose that the special Bessel period corresponding to E does not vanish identically on \pi . Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value L (1/2, \pi) L (1/2, \pi\times\chi_E ) , where \chi_E denotes the quadratic character corresponding to E . Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkDFOwzAYhS0EEqUwcAOvDKF2bMfxSCsoSJVACGbL-f0bEqVJZZeBrXdg4iK9ADfpSWgEQkzvDe896X2EnHN2KbnmkwaXacKZkAdkxKVQmSkLcfjnlTomJyk1jHGtpBgR-4ih7tDTl7avXEvnsU9pt_l4iC45T6HvGoT1W0TadzStEOp9aIopYUtXGOveJ-o6T6dfW3jFiHG3-Uz_aqfkKLg24dmvjsnzzfXT7DZb3M_vZleLDAST60yrogzOsTKUFQYBuchNpbCQYAx4DlrkQrpcGg3KgCiVkFAVUgLzHvQ-PiYXP7swHIgY7CrWSxffLWd2IGMHMnYgI74Biipa6w</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Furusawa, Masaaki</creator><creator>Morimoto, Kazuki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><author>Furusawa, Masaaki ; Morimoto, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furusawa, Masaaki</creatorcontrib><creatorcontrib>Morimoto, Kazuki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furusawa, Masaaki</au><au>Morimoto, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>1295</spage><epage>1331</epage><pages>1295-1331</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representation of \mathrm{SO} (2) is trivial. Let \pi be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field F whose local component \pi_v at any archimedean place v of F is a discrete series representation. Let E be a quadratic extension of F and suppose that the special Bessel period corresponding to E does not vanish identically on \pi . Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value L (1/2, \pi) L (1/2, \pi\times\chi_E ) , where \chi_E denotes the quadratic character corresponding to E . Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</abstract><doi>10.4171/jems/1034</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1435-9855
ispartof Journal of the European Mathematical Society : JEMS, 2021-01, Vol.23 (4), p.1295-1331
issn 1435-9855
1435-9863
language eng
recordid cdi_crossref_primary_10_4171_jems_1034
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20global%20Gross%E2%80%93Prasad%20conjecture%20on%20special%20Bessel%20periods%20and%20B%C3%B6cherer%E2%80%99s%20conjecture&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Furusawa,%20Masaaki&rft.date=2021-01-01&rft.volume=23&rft.issue=4&rft.spage=1295&rft.epage=1331&rft.pages=1295-1331&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1034&rft_dat=%3Ccrossref%3E10_4171_jems_1034%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true