Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture
In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) . Recall that a Bessel period for \mathrm{SO}(2n+1)\times\mathrm{SO}(2) is called special when the representa...
Gespeichert in:
Veröffentlicht in: | Journal of the European Mathematical Society : JEMS 2021-01, Vol.23 (4), p.1295-1331 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1331 |
---|---|
container_issue | 4 |
container_start_page | 1295 |
container_title | Journal of the European Mathematical Society : JEMS |
container_volume | 23 |
creator | Furusawa, Masaaki Morimoto, Kazuki |
description | In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
. Recall that a Bessel period for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
is called
special
when the representation of
\mathrm{SO} (2)
is trivial. Let
\pi
be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field
F
whose local component
\pi_v
at any archimedean place
v
of
F
is a discrete series representation. Let
E
be a quadratic extension of
F
and suppose that the special Bessel period corresponding to
E
does not vanish identically on
\pi
. Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value
L (1/2, \pi) L (1/2, \pi\times\chi_E )
, where
\chi_E
denotes the quadratic character corresponding to
E
. Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms. |
doi_str_mv | 10.4171/jems/1034 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_jems_1034</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_jems_1034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</originalsourceid><addsrcrecordid>eNpNkDFOwzAYhS0EEqUwcAOvDKF2bMfxSCsoSJVACGbL-f0bEqVJZZeBrXdg4iK9ADfpSWgEQkzvDe896X2EnHN2KbnmkwaXacKZkAdkxKVQmSkLcfjnlTomJyk1jHGtpBgR-4ih7tDTl7avXEvnsU9pt_l4iC45T6HvGoT1W0TadzStEOp9aIopYUtXGOveJ-o6T6dfW3jFiHG3-Uz_aqfkKLg24dmvjsnzzfXT7DZb3M_vZleLDAST60yrogzOsTKUFQYBuchNpbCQYAx4DlrkQrpcGg3KgCiVkFAVUgLzHvQ-PiYXP7swHIgY7CrWSxffLWd2IGMHMnYgI74Biipa6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Furusawa, Masaaki ; Morimoto, Kazuki</creator><creatorcontrib>Furusawa, Masaaki ; Morimoto, Kazuki</creatorcontrib><description>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
. Recall that a Bessel period for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
is called
special
when the representation of
\mathrm{SO} (2)
is trivial. Let
\pi
be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field
F
whose local component
\pi_v
at any archimedean place
v
of
F
is a discrete series representation. Let
E
be a quadratic extension of
F
and suppose that the special Bessel period corresponding to
E
does not vanish identically on
\pi
. Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value
L (1/2, \pi) L (1/2, \pi\times\chi_E )
, where
\chi_E
denotes the quadratic character corresponding to
E
. Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</description><identifier>ISSN: 1435-9855</identifier><identifier>EISSN: 1435-9863</identifier><identifier>DOI: 10.4171/jems/1034</identifier><language>eng</language><ispartof>Journal of the European Mathematical Society : JEMS, 2021-01, Vol.23 (4), p.1295-1331</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Furusawa, Masaaki</creatorcontrib><creatorcontrib>Morimoto, Kazuki</creatorcontrib><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><title>Journal of the European Mathematical Society : JEMS</title><description>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
. Recall that a Bessel period for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
is called
special
when the representation of
\mathrm{SO} (2)
is trivial. Let
\pi
be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field
F
whose local component
\pi_v
at any archimedean place
v
of
F
is a discrete series representation. Let
E
be a quadratic extension of
F
and suppose that the special Bessel period corresponding to
E
does not vanish identically on
\pi
. Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value
L (1/2, \pi) L (1/2, \pi\times\chi_E )
, where
\chi_E
denotes the quadratic character corresponding to
E
. Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</description><issn>1435-9855</issn><issn>1435-9863</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkDFOwzAYhS0EEqUwcAOvDKF2bMfxSCsoSJVACGbL-f0bEqVJZZeBrXdg4iK9ADfpSWgEQkzvDe896X2EnHN2KbnmkwaXacKZkAdkxKVQmSkLcfjnlTomJyk1jHGtpBgR-4ih7tDTl7avXEvnsU9pt_l4iC45T6HvGoT1W0TadzStEOp9aIopYUtXGOveJ-o6T6dfW3jFiHG3-Uz_aqfkKLg24dmvjsnzzfXT7DZb3M_vZleLDAST60yrogzOsTKUFQYBuchNpbCQYAx4DlrkQrpcGg3KgCiVkFAVUgLzHvQ-PiYXP7swHIgY7CrWSxffLWd2IGMHMnYgI74Biipa6w</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Furusawa, Masaaki</creator><creator>Morimoto, Kazuki</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</title><author>Furusawa, Masaaki ; Morimoto, Kazuki</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-7568faa08f8bef3c2329b5e64c99cd1c73234a2497c59c38534cb644c0ddc7c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Furusawa, Masaaki</creatorcontrib><creatorcontrib>Morimoto, Kazuki</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the European Mathematical Society : JEMS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Furusawa, Masaaki</au><au>Morimoto, Kazuki</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture</atitle><jtitle>Journal of the European Mathematical Society : JEMS</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>23</volume><issue>4</issue><spage>1295</spage><epage>1331</epage><pages>1295-1331</pages><issn>1435-9855</issn><eissn>1435-9863</eissn><abstract>In this paper we pursue the refined global Gross–Prasad conjecture for Bessel periods formulated by Yifeng Liu in the case of special Bessel periods for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
. Recall that a Bessel period for
\mathrm{SO}(2n+1)\times\mathrm{SO}(2)
is called
special
when the representation of
\mathrm{SO} (2)
is trivial. Let
\pi
be an irreducible cuspidal tempered automorphic representation of a special orthogonal group of an odd-dimensional quadratic space over a totally real number field
F
whose local component
\pi_v
at any archimedean place
v
of
F
is a discrete series representation. Let
E
be a quadratic extension of
F
and suppose that the special Bessel period corresponding to
E
does not vanish identically on
\pi
. Then we prove the Ichino–Ikeda type explicit formula conjectured by Liu for the central value
L (1/2, \pi) L (1/2, \pi\times\chi_E )
, where
\chi_E
denotes the quadratic character corresponding to
E
. Our result yields a proof of Böcherer’s conjecture on holomorphic Siegel cusp forms of degree two which are Hecke eigenforms.</abstract><doi>10.4171/jems/1034</doi><tpages>37</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1435-9855 |
ispartof | Journal of the European Mathematical Society : JEMS, 2021-01, Vol.23 (4), p.1295-1331 |
issn | 1435-9855 1435-9863 |
language | eng |
recordid | cdi_crossref_primary_10_4171_jems_1034 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Refined global Gross–Prasad conjecture on special Bessel periods and Böcherer’s conjecture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T17%3A00%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Refined%20global%20Gross%E2%80%93Prasad%20conjecture%20on%20special%20Bessel%20periods%20and%20B%C3%B6cherer%E2%80%99s%20conjecture&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society%20:%20JEMS&rft.au=Furusawa,%20Masaaki&rft.date=2021-01-01&rft.volume=23&rft.issue=4&rft.spage=1295&rft.epage=1331&rft.pages=1295-1331&rft.issn=1435-9855&rft.eissn=1435-9863&rft_id=info:doi/10.4171/jems/1034&rft_dat=%3Ccrossref%3E10_4171_jems_1034%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |