On dual surjunctivity and applications

We explore the dual version of Gottschalk’s conjecture recently introduced by Capobianco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic. By quantifying...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Groups, geometry and dynamics geometry and dynamics, 2022-01, Vol.16 (3), p.943-961
Hauptverfasser: Doucha, Michal, Gismatullin, Jakub
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 961
container_issue 3
container_start_page 943
container_title Groups, geometry and dynamics
container_volume 16
creator Doucha, Michal
Gismatullin, Jakub
description We explore the dual version of Gottschalk’s conjecture recently introduced by Capobianco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic. By quantifying the notions of injectivity and post-surjectivity for cellular automata, we show that the image of the full topological shift under an injective cellular automaton is a subshift of finite type in a quantitative way. Moreover, we show that dual surjunctive groups are closed under ultraproducts, under elementary equivalence, and under certain semidirect products (using the ideas of Arzhantseva and Gal for the latter); they form a closed subset in the space of marked groups, fully residually dual surjunctive groups are dual surjunctive, etc. We also consider dual surjunctive systems for more general dynamical systems, namely for certain expansive algebraic actions, employing results of Chung and Li.
doi_str_mv 10.4171/ggd/681
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_ggd_681</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_ggd_681</sourcerecordid><originalsourceid>FETCH-LOGICAL-c220t-34fd9f96427695822e341ac9a5d14d6f2a4565edb734c3b2438bbe2b55d7dbe93</originalsourceid><addsrcrecordid>eNo9z81KAzEUhuEgCtYq3sKsdDU2J7-TpRT_oNCNrkOSk5SUcTokM0Lv3ori6ntXHzyE3AJ9EKBhtdvhSnVwRhagFLSagTz_b6ovyVWte0qV0JwuyN12aHB2fVPnsp-HMOWvPB0bN2DjxrHPwU35MNRrcpFcX-PN3y7Jx_PT-_q13Wxf3taPmzYwRqeWi4QmGSWYVkZ2jEUuwAXjJIJAlZgTUsmIXnMRuGeCd95H5qVEjT4aviT3v7-hHGotMdmx5E9Xjhao_eHZE8-eePwbORxCBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On dual surjunctivity and applications</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Doucha, Michal ; Gismatullin, Jakub</creator><creatorcontrib>Doucha, Michal ; Gismatullin, Jakub</creatorcontrib><description>We explore the dual version of Gottschalk’s conjecture recently introduced by Capobianco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic. By quantifying the notions of injectivity and post-surjectivity for cellular automata, we show that the image of the full topological shift under an injective cellular automaton is a subshift of finite type in a quantitative way. Moreover, we show that dual surjunctive groups are closed under ultraproducts, under elementary equivalence, and under certain semidirect products (using the ideas of Arzhantseva and Gal for the latter); they form a closed subset in the space of marked groups, fully residually dual surjunctive groups are dual surjunctive, etc. We also consider dual surjunctive systems for more general dynamical systems, namely for certain expansive algebraic actions, employing results of Chung and Li.</description><identifier>ISSN: 1661-7207</identifier><identifier>EISSN: 1661-7215</identifier><identifier>DOI: 10.4171/ggd/681</identifier><language>eng</language><ispartof>Groups, geometry and dynamics, 2022-01, Vol.16 (3), p.943-961</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,27924,27925</link.rule.ids></links><search><creatorcontrib>Doucha, Michal</creatorcontrib><creatorcontrib>Gismatullin, Jakub</creatorcontrib><title>On dual surjunctivity and applications</title><title>Groups, geometry and dynamics</title><description>We explore the dual version of Gottschalk’s conjecture recently introduced by Capobianco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic. By quantifying the notions of injectivity and post-surjectivity for cellular automata, we show that the image of the full topological shift under an injective cellular automaton is a subshift of finite type in a quantitative way. Moreover, we show that dual surjunctive groups are closed under ultraproducts, under elementary equivalence, and under certain semidirect products (using the ideas of Arzhantseva and Gal for the latter); they form a closed subset in the space of marked groups, fully residually dual surjunctive groups are dual surjunctive, etc. We also consider dual surjunctive systems for more general dynamical systems, namely for certain expansive algebraic actions, employing results of Chung and Li.</description><issn>1661-7207</issn><issn>1661-7215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9z81KAzEUhuEgCtYq3sKsdDU2J7-TpRT_oNCNrkOSk5SUcTokM0Lv3ori6ntXHzyE3AJ9EKBhtdvhSnVwRhagFLSagTz_b6ovyVWte0qV0JwuyN12aHB2fVPnsp-HMOWvPB0bN2DjxrHPwU35MNRrcpFcX-PN3y7Jx_PT-_q13Wxf3taPmzYwRqeWi4QmGSWYVkZ2jEUuwAXjJIJAlZgTUsmIXnMRuGeCd95H5qVEjT4aviT3v7-hHGotMdmx5E9Xjhao_eHZE8-eePwbORxCBQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Doucha, Michal</creator><creator>Gismatullin, Jakub</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220101</creationdate><title>On dual surjunctivity and applications</title><author>Doucha, Michal ; Gismatullin, Jakub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c220t-34fd9f96427695822e341ac9a5d14d6f2a4565edb734c3b2438bbe2b55d7dbe93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Doucha, Michal</creatorcontrib><creatorcontrib>Gismatullin, Jakub</creatorcontrib><collection>CrossRef</collection><jtitle>Groups, geometry and dynamics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Doucha, Michal</au><au>Gismatullin, Jakub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On dual surjunctivity and applications</atitle><jtitle>Groups, geometry and dynamics</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>16</volume><issue>3</issue><spage>943</spage><epage>961</epage><pages>943-961</pages><issn>1661-7207</issn><eissn>1661-7215</eissn><abstract>We explore the dual version of Gottschalk’s conjecture recently introduced by Capobianco, Kari, and Taati, and the notion of dual surjunctivity in general. We show that dual surjunctive groups satisfy Kaplansky’s direct finiteness conjecture for all fields of positive characteristic. By quantifying the notions of injectivity and post-surjectivity for cellular automata, we show that the image of the full topological shift under an injective cellular automaton is a subshift of finite type in a quantitative way. Moreover, we show that dual surjunctive groups are closed under ultraproducts, under elementary equivalence, and under certain semidirect products (using the ideas of Arzhantseva and Gal for the latter); they form a closed subset in the space of marked groups, fully residually dual surjunctive groups are dual surjunctive, etc. We also consider dual surjunctive systems for more general dynamical systems, namely for certain expansive algebraic actions, employing results of Chung and Li.</abstract><doi>10.4171/ggd/681</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1661-7207
ispartof Groups, geometry and dynamics, 2022-01, Vol.16 (3), p.943-961
issn 1661-7207
1661-7215
language eng
recordid cdi_crossref_primary_10_4171_ggd_681
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title On dual surjunctivity and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T12%3A17%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20dual%20surjunctivity%20and%20applications&rft.jtitle=Groups,%20geometry%20and%20dynamics&rft.au=Doucha,%20Michal&rft.date=2022-01-01&rft.volume=16&rft.issue=3&rft.spage=943&rft.epage=961&rft.pages=943-961&rft.issn=1661-7207&rft.eissn=1661-7215&rft_id=info:doi/10.4171/ggd/681&rft_dat=%3Ccrossref%3E10_4171_ggd_681%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true