Class field theory, its three main generalisations, and applications

This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:EMS surveys in mathematical sciences 2021-01, Vol.8 (1), p.107-133
1. Verfasser: Fesenko, Ivan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 133
container_issue 1
container_start_page 107
container_title EMS surveys in mathematical sciences
container_volume 8
creator Fesenko, Ivan
description This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.
doi_str_mv 10.4171/emss/45
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_emss_45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_emss_45</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRsNTiX5idm8bOO8lSolah4EbBXbiZuaMDeTE3m_57LRVX3-FbHDiM3Upxb2QpdzgQ7Yy9YCulRVUo6T4v_9nKa7YhSp2w0gljS71ij00PRDwm7ANfvnHKxy1PC_1yRuQDpJF_4YgZ-kSwpGmkLYcxcJjnPvnzc8OuIvSEm79ds4_np_fmpTi87V-bh0Phla2WwkEtpbNGxaqrLXaoK-ex8uhdbaJQVgXfgUMdpOuc8SGG0ioHJUSFDo1es7uz1-eJKGNs55wGyMdWivbU3576W2P1D2EpTyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Class field theory, its three main generalisations, and applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fesenko, Ivan</creator><creatorcontrib>Fesenko, Ivan</creatorcontrib><description>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</description><identifier>ISSN: 2308-2151</identifier><identifier>EISSN: 2308-216X</identifier><identifier>DOI: 10.4171/emss/45</identifier><language>eng</language><ispartof>EMS surveys in mathematical sciences, 2021-01, Vol.8 (1), p.107-133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Fesenko, Ivan</creatorcontrib><title>Class field theory, its three main generalisations, and applications</title><title>EMS surveys in mathematical sciences</title><description>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</description><issn>2308-2151</issn><issn>2308-216X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRsNTiX5idm8bOO8lSolah4EbBXbiZuaMDeTE3m_57LRVX3-FbHDiM3Upxb2QpdzgQ7Yy9YCulRVUo6T4v_9nKa7YhSp2w0gljS71ij00PRDwm7ANfvnHKxy1PC_1yRuQDpJF_4YgZ-kSwpGmkLYcxcJjnPvnzc8OuIvSEm79ds4_np_fmpTi87V-bh0Phla2WwkEtpbNGxaqrLXaoK-ex8uhdbaJQVgXfgUMdpOuc8SGG0ioHJUSFDo1es7uz1-eJKGNs55wGyMdWivbU3576W2P1D2EpTyI</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Fesenko, Ivan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Class field theory, its three main generalisations, and applications</title><author>Fesenko, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesenko, Ivan</creatorcontrib><collection>CrossRef</collection><jtitle>EMS surveys in mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesenko, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class field theory, its three main generalisations, and applications</atitle><jtitle>EMS surveys in mathematical sciences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>107</spage><epage>133</epage><pages>107-133</pages><issn>2308-2151</issn><eissn>2308-216X</eissn><abstract>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</abstract><doi>10.4171/emss/45</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2308-2151
ispartof EMS surveys in mathematical sciences, 2021-01, Vol.8 (1), p.107-133
issn 2308-2151
2308-216X
language eng
recordid cdi_crossref_primary_10_4171_emss_45
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Class field theory, its three main generalisations, and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20field%20theory,%20its%20three%20main%20generalisations,%20and%20applications&rft.jtitle=EMS%20surveys%20in%20mathematical%20sciences&rft.au=Fesenko,%20Ivan&rft.date=2021-01-01&rft.volume=8&rft.issue=1&rft.spage=107&rft.epage=133&rft.pages=107-133&rft.issn=2308-2151&rft.eissn=2308-216X&rft_id=info:doi/10.4171/emss/45&rft_dat=%3Ccrossref%3E10_4171_emss_45%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true