Class field theory, its three main generalisations, and applications
This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are d...
Gespeichert in:
Veröffentlicht in: | EMS surveys in mathematical sciences 2021-01, Vol.8 (1), p.107-133 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 133 |
---|---|
container_issue | 1 |
container_start_page | 107 |
container_title | EMS surveys in mathematical sciences |
container_volume | 8 |
creator | Fesenko, Ivan |
description | This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included. |
doi_str_mv | 10.4171/emss/45 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_emss_45</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_emss_45</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</originalsourceid><addsrcrecordid>eNo9j0tLw0AURgdRsNTiX5idm8bOO8lSolah4EbBXbiZuaMDeTE3m_57LRVX3-FbHDiM3Upxb2QpdzgQ7Yy9YCulRVUo6T4v_9nKa7YhSp2w0gljS71ij00PRDwm7ANfvnHKxy1PC_1yRuQDpJF_4YgZ-kSwpGmkLYcxcJjnPvnzc8OuIvSEm79ds4_np_fmpTi87V-bh0Phla2WwkEtpbNGxaqrLXaoK-ex8uhdbaJQVgXfgUMdpOuc8SGG0ioHJUSFDo1es7uz1-eJKGNs55wGyMdWivbU3576W2P1D2EpTyI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Class field theory, its three main generalisations, and applications</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fesenko, Ivan</creator><creatorcontrib>Fesenko, Ivan</creatorcontrib><description>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</description><identifier>ISSN: 2308-2151</identifier><identifier>EISSN: 2308-216X</identifier><identifier>DOI: 10.4171/emss/45</identifier><language>eng</language><ispartof>EMS surveys in mathematical sciences, 2021-01, Vol.8 (1), p.107-133</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,27901,27902</link.rule.ids></links><search><creatorcontrib>Fesenko, Ivan</creatorcontrib><title>Class field theory, its three main generalisations, and applications</title><title>EMS surveys in mathematical sciences</title><description>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</description><issn>2308-2151</issn><issn>2308-216X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j0tLw0AURgdRsNTiX5idm8bOO8lSolah4EbBXbiZuaMDeTE3m_57LRVX3-FbHDiM3Upxb2QpdzgQ7Yy9YCulRVUo6T4v_9nKa7YhSp2w0gljS71ij00PRDwm7ANfvnHKxy1PC_1yRuQDpJF_4YgZ-kSwpGmkLYcxcJjnPvnzc8OuIvSEm79ds4_np_fmpTi87V-bh0Phla2WwkEtpbNGxaqrLXaoK-ex8uhdbaJQVgXfgUMdpOuc8SGG0ioHJUSFDo1es7uz1-eJKGNs55wGyMdWivbU3576W2P1D2EpTyI</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Fesenko, Ivan</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Class field theory, its three main generalisations, and applications</title><author>Fesenko, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-6a9116542f8b95ebe386ce8cec694f0252dcba6e3d16b64cdfd7526a7af2e6e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fesenko, Ivan</creatorcontrib><collection>CrossRef</collection><jtitle>EMS surveys in mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fesenko, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Class field theory, its three main generalisations, and applications</atitle><jtitle>EMS surveys in mathematical sciences</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>1</issue><spage>107</spage><epage>133</epage><pages>107-133</pages><issn>2308-2151</issn><eissn>2308-216X</eissn><abstract>This work presents branches of class field theory. Special and general approaches to class field theory, and their roles, are discussed. Three main generalisations of class field theory: higher class field theory, Langlands correspondences and anabelian geometry, and their further developments are discussed. Several directions of unification of generalisations of class field theory are proposed. New fundamental open problems are included.</abstract><doi>10.4171/emss/45</doi><tpages>27</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2308-2151 |
ispartof | EMS surveys in mathematical sciences, 2021-01, Vol.8 (1), p.107-133 |
issn | 2308-2151 2308-216X |
language | eng |
recordid | cdi_crossref_primary_10_4171_emss_45 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Class field theory, its three main generalisations, and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T09%3A04%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Class%20field%20theory,%20its%20three%20main%20generalisations,%20and%20applications&rft.jtitle=EMS%20surveys%20in%20mathematical%20sciences&rft.au=Fesenko,%20Ivan&rft.date=2021-01-01&rft.volume=8&rft.issue=1&rft.spage=107&rft.epage=133&rft.pages=107-133&rft.issn=2308-2151&rft.eissn=2308-216X&rft_id=info:doi/10.4171/emss/45&rft_dat=%3Ccrossref%3E10_4171_emss_45%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |