Møller operators and Hadamard states for Dirac fields with MIT boundary conditions

The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary once a suitable propagation of singularities theorem is assumed. To this avail, we consider particular pairs of weakly-h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2022, Vol.27, p.1693-1737
Hauptverfasser: Drago, Nicoló, Ginoux, Nicolas, Murro, Simone
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1737
container_issue
container_start_page 1693
container_title Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.
container_volume 27
creator Drago, Nicoló
Ginoux, Nicolas
Murro, Simone
description The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary once a suitable propagation of singularities theorem is assumed. To this avail, we consider particular pairs of weakly-hyperbolic symmetric systems coupled with admissible boundary conditions. We then prove the existence of an isomorphism between the solution spaces to the Cauchy problems associated with these operators – this isomorphism is in fact unitary between the spaces of L^2 -initial data. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a * -isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this * -isomorphism preserving the singular structure of its two-point distribution.
doi_str_mv 10.4171/dm/x16
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_dm_x16</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_dm_x16</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-50fa88fb734a1ccd267ac027ba082acc972a8834d87747d73051906fd440e66f3</originalsourceid><addsrcrecordid>eNo9kMtKxDAYhYMoOI76DFm5q5M0t3Yp42UGZnDhuC5_8ydYaZshiei8mXtfzIri6hw48HH4CLnk7Fpywxc4LD64PiIzLgUvmJbi-L8LdUrOUnpljNfaqBl52n599r2LNOxdhBxiojAiXQHCABFpypBdoj5EettFsNR3rsdE37v8QrfrHW3D24gQD9SGEbvchTGdkxMPfXIXfzknz_d3u-Wq2Dw-rJc3m8KWSuVCMQ9V5VsjJHBrsdQGLCtNC6wqwdralNMuJFbGSINGMMVrpj1KyZzWXszJ1S_XxpBSdL7Zx256fWg4a35UNDg0kwrxDVdQUik</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Møller operators and Hadamard states for Dirac fields with MIT boundary conditions</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Drago, Nicoló ; Ginoux, Nicolas ; Murro, Simone</creator><creatorcontrib>Drago, Nicoló ; Ginoux, Nicolas ; Murro, Simone</creatorcontrib><description>The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary once a suitable propagation of singularities theorem is assumed. To this avail, we consider particular pairs of weakly-hyperbolic symmetric systems coupled with admissible boundary conditions. We then prove the existence of an isomorphism between the solution spaces to the Cauchy problems associated with these operators – this isomorphism is in fact unitary between the spaces of L^2 -initial data. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a * -isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this * -isomorphism preserving the singular structure of its two-point distribution.</description><identifier>ISSN: 1431-0635</identifier><identifier>EISSN: 1431-0643</identifier><identifier>DOI: 10.4171/dm/x16</identifier><language>eng</language><ispartof>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2022, Vol.27, p.1693-1737</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-50fa88fb734a1ccd267ac027ba082acc972a8834d87747d73051906fd440e66f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Drago, Nicoló</creatorcontrib><creatorcontrib>Ginoux, Nicolas</creatorcontrib><creatorcontrib>Murro, Simone</creatorcontrib><title>Møller operators and Hadamard states for Dirac fields with MIT boundary conditions</title><title>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</title><description>The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary once a suitable propagation of singularities theorem is assumed. To this avail, we consider particular pairs of weakly-hyperbolic symmetric systems coupled with admissible boundary conditions. We then prove the existence of an isomorphism between the solution spaces to the Cauchy problems associated with these operators – this isomorphism is in fact unitary between the spaces of L^2 -initial data. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a * -isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this * -isomorphism preserving the singular structure of its two-point distribution.</description><issn>1431-0635</issn><issn>1431-0643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMtKxDAYhYMoOI76DFm5q5M0t3Yp42UGZnDhuC5_8ydYaZshiei8mXtfzIri6hw48HH4CLnk7Fpywxc4LD64PiIzLgUvmJbi-L8LdUrOUnpljNfaqBl52n599r2LNOxdhBxiojAiXQHCABFpypBdoj5EettFsNR3rsdE37v8QrfrHW3D24gQD9SGEbvchTGdkxMPfXIXfzknz_d3u-Wq2Dw-rJc3m8KWSuVCMQ9V5VsjJHBrsdQGLCtNC6wqwdralNMuJFbGSINGMMVrpj1KyZzWXszJ1S_XxpBSdL7Zx256fWg4a35UNDg0kwrxDVdQUik</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Drago, Nicoló</creator><creator>Ginoux, Nicolas</creator><creator>Murro, Simone</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Møller operators and Hadamard states for Dirac fields with MIT boundary conditions</title><author>Drago, Nicoló ; Ginoux, Nicolas ; Murro, Simone</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-50fa88fb734a1ccd267ac027ba082acc972a8834d87747d73051906fd440e66f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Drago, Nicoló</creatorcontrib><creatorcontrib>Ginoux, Nicolas</creatorcontrib><creatorcontrib>Murro, Simone</creatorcontrib><collection>CrossRef</collection><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Drago, Nicoló</au><au>Ginoux, Nicolas</au><au>Murro, Simone</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Møller operators and Hadamard states for Dirac fields with MIT boundary conditions</atitle><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle><date>2022</date><risdate>2022</risdate><volume>27</volume><spage>1693</spage><epage>1737</epage><pages>1693-1737</pages><issn>1431-0635</issn><eissn>1431-0643</eissn><abstract>The aim of this paper is to prove the existence of Hadamard states for Dirac fields coupled with MIT boundary conditions on any globally hyperbolic manifold with timelike boundary once a suitable propagation of singularities theorem is assumed. To this avail, we consider particular pairs of weakly-hyperbolic symmetric systems coupled with admissible boundary conditions. We then prove the existence of an isomorphism between the solution spaces to the Cauchy problems associated with these operators – this isomorphism is in fact unitary between the spaces of L^2 -initial data. In particular, we show that for Dirac fields with MIT boundary conditions, this isomorphism can be lifted to a * -isomorphism between the algebras of Dirac fields and that any Hadamard state can be pulled back along this * -isomorphism preserving the singular structure of its two-point distribution.</abstract><doi>10.4171/dm/x16</doi><tpages>45</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1431-0635
ispartof Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2022, Vol.27, p.1693-1737
issn 1431-0635
1431-0643
language eng
recordid cdi_crossref_primary_10_4171_dm_x16
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
title Møller operators and Hadamard states for Dirac fields with MIT boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T08%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=M%C3%B8ller%20operators%20and%20Hadamard%20states%20for%20Dirac%20fields%20with%20MIT%20boundary%20conditions&rft.jtitle=Documenta%20mathematica%20Journal%20der%20Deutschen%20Mathematiker-Vereinigung.&rft.au=Drago,%20Nicol%C3%B3&rft.date=2022&rft.volume=27&rft.spage=1693&rft.epage=1737&rft.pages=1693-1737&rft.issn=1431-0635&rft.eissn=1431-0643&rft_id=info:doi/10.4171/dm/x16&rft_dat=%3Ccrossref%3E10_4171_dm_x16%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true