Virtual equivariant Grothendieck-Riemann-Roch formula
For a G -scheme X with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of B. Fantechi and L. Göttsche [Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2021, Vol.26, p.2061-2094 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2094 |
---|---|
container_issue | |
container_start_page | 2061 |
container_title | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. |
container_volume | 26 |
creator | Ravi, Charanya Sreedhar, Bhamidi |
description | For a
G
-scheme
X
with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of
B. Fantechi
and
L. Göttsche
[Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over
\mathbb{C}
with proper actions. |
doi_str_mv | 10.4171/dm/864 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_dm_864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_dm_864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1004-bda415bc7cbddf025162dea5d8c352bf1c1197dfb8d2028e05e904972aedad003</originalsourceid><addsrcrecordid>eNo9j8tKA0EQAAdRMEb9hj15G9M9j30cJWgiBISgXpfe6Rkyug-d3RX8exXFU9WpoIS4RLg2WOCKu1WZmyOxQKNRQm708b9reyrOxvEFAKu8sAthn2OaZmoz_z7HD0qR-inbpGE6-J6jd69yH31HfS_3gztkYUjd3NK5OAnUjv7ij0vxdHf7uN7K3cPmfn2zkw4BjGyYDNrGFa5hDqAs5oo9WS6dtqoJ6BCrgkNTsgJVerC-AlMVijwTA-iluPrtujSMY_Khfkuxo_RZI9Q_szV39fes_gK5C0dt</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Virtual equivariant Grothendieck-Riemann-Roch formula</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Ravi, Charanya ; Sreedhar, Bhamidi</creator><creatorcontrib>Ravi, Charanya ; Sreedhar, Bhamidi</creatorcontrib><description>For a
G
-scheme
X
with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of
B. Fantechi
and
L. Göttsche
[Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over
\mathbb{C}
with proper actions.</description><identifier>ISSN: 1431-0635</identifier><identifier>EISSN: 1431-0643</identifier><identifier>DOI: 10.4171/dm/864</identifier><language>eng</language><ispartof>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2021, Vol.26, p.2061-2094</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c1004-bda415bc7cbddf025162dea5d8c352bf1c1197dfb8d2028e05e904972aedad003</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Ravi, Charanya</creatorcontrib><creatorcontrib>Sreedhar, Bhamidi</creatorcontrib><title>Virtual equivariant Grothendieck-Riemann-Roch formula</title><title>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</title><description>For a
G
-scheme
X
with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of
B. Fantechi
and
L. Göttsche
[Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over
\mathbb{C}
with proper actions.</description><issn>1431-0635</issn><issn>1431-0643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9j8tKA0EQAAdRMEb9hj15G9M9j30cJWgiBISgXpfe6Rkyug-d3RX8exXFU9WpoIS4RLg2WOCKu1WZmyOxQKNRQm708b9reyrOxvEFAKu8sAthn2OaZmoz_z7HD0qR-inbpGE6-J6jd69yH31HfS_3gztkYUjd3NK5OAnUjv7ij0vxdHf7uN7K3cPmfn2zkw4BjGyYDNrGFa5hDqAs5oo9WS6dtqoJ6BCrgkNTsgJVerC-AlMVijwTA-iluPrtujSMY_Khfkuxo_RZI9Q_szV39fes_gK5C0dt</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ravi, Charanya</creator><creator>Sreedhar, Bhamidi</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2021</creationdate><title>Virtual equivariant Grothendieck-Riemann-Roch formula</title><author>Ravi, Charanya ; Sreedhar, Bhamidi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1004-bda415bc7cbddf025162dea5d8c352bf1c1197dfb8d2028e05e904972aedad003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ravi, Charanya</creatorcontrib><creatorcontrib>Sreedhar, Bhamidi</creatorcontrib><collection>CrossRef</collection><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ravi, Charanya</au><au>Sreedhar, Bhamidi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Virtual equivariant Grothendieck-Riemann-Roch formula</atitle><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle><date>2021</date><risdate>2021</risdate><volume>26</volume><spage>2061</spage><epage>2094</epage><pages>2061-2094</pages><issn>1431-0635</issn><eissn>1431-0643</eissn><abstract>For a
G
-scheme
X
with a given equivariant perfect obstruction theory, we prove a virtual equivariant Grothendieck-Riemann-Roch formula, this is an extension of a result of
B. Fantechi
and
L. Göttsche
[Geom. Topol. 14, No. 1, 83–115 (2010; Zbl 1194.14017)] to the equivariant context. We also prove a virtual non-abelian localization theorem for schemes over
\mathbb{C}
with proper actions.</abstract><doi>10.4171/dm/864</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-0635 |
ispartof | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2021, Vol.26, p.2061-2094 |
issn | 1431-0635 1431-0643 |
language | eng |
recordid | cdi_crossref_primary_10_4171_dm_864 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Virtual equivariant Grothendieck-Riemann-Roch formula |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A06%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Virtual%20equivariant%20Grothendieck-Riemann-Roch%20formula&rft.jtitle=Documenta%20mathematica%20Journal%20der%20Deutschen%20Mathematiker-Vereinigung.&rft.au=Ravi,%20Charanya&rft.date=2021&rft.volume=26&rft.spage=2061&rft.epage=2094&rft.pages=2061-2094&rft.issn=1431-0635&rft.eissn=1431-0643&rft_id=info:doi/10.4171/dm/864&rft_dat=%3Ccrossref%3E10_4171_dm_864%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |