Finiteness Properties of Affine Deligne-Lusztig Varieties
Affine Deligne-Lusztig varieties are closely related to the special fibre of Newton strata in the reduction of Shimura varieties or of moduli spaces of G -shtukas. In almost all cases, they are not quasi-compact. In this note we prove basic finiteness properties of affine Deligne-Lusztig varieties u...
Gespeichert in:
Veröffentlicht in: | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. 2020, Vol.25, p.899-910 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 910 |
---|---|
container_issue | |
container_start_page | 899 |
container_title | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung. |
container_volume | 25 |
creator | Hamacher, Paul Viehmann, Eva |
description | Affine Deligne-Lusztig varieties are closely related to the special fibre of Newton strata in the reduction of Shimura varieties or of moduli spaces of G -shtukas. In almost all cases, they are not quasi-compact. In this note we prove basic finiteness properties of affine Deligne-Lusztig varieties under minimal assumptions on the associated group. We show that affine Deligne-Lusztig varieties are locally of finite type, and prove a global finiteness result related to the natural group action. Similar results have previously been known for special situations. |
doi_str_mv | 10.4171/dm/766 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_dm_766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_dm_766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185t-dd206d995463e0329bc04348f54234ec0a713ef9078098fa4ef3f553673bf0113</originalsourceid><addsrcrecordid>eNo9j81Kw0AURgdRsFZ9hqzcxd6bOz-ZZam2CgFdqNuQJveWkSYpM3GhT69FcXW-xeGDo9Q1wq1Gh4uuXzhrT9QMNWEOVtPp_yZzri5SegdAb52ZKb8OQ5h44JSy5zgeOE6BUzZKthQJA2d3vA-7gfPqI31NYZe9NTHw0blUZ9LsE1_9ca5e1_cvq4e8eto8rpZV3mJpprzrCrCd90ZbYqDCb1vQpEsxuiDNLTQOicWDK8GX0mgWEmPIOtoKINJc3fz-tnFMKbLUhxj6Jn7WCPUxuO76-ieYvgFUlUcb</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finiteness Properties of Affine Deligne-Lusztig Varieties</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Hamacher, Paul ; Viehmann, Eva</creator><creatorcontrib>Hamacher, Paul ; Viehmann, Eva</creatorcontrib><description>Affine Deligne-Lusztig varieties are closely related to the special fibre of Newton strata in the reduction of Shimura varieties or of moduli spaces of G -shtukas. In almost all cases, they are not quasi-compact. In this note we prove basic finiteness properties of affine Deligne-Lusztig varieties under minimal assumptions on the associated group. We show that affine Deligne-Lusztig varieties are locally of finite type, and prove a global finiteness result related to the natural group action. Similar results have previously been known for special situations.</description><identifier>ISSN: 1431-0635</identifier><identifier>EISSN: 1431-0643</identifier><identifier>DOI: 10.4171/dm/766</identifier><language>eng</language><ispartof>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2020, Vol.25, p.899-910</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c185t-dd206d995463e0329bc04348f54234ec0a713ef9078098fa4ef3f553673bf0113</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Hamacher, Paul</creatorcontrib><creatorcontrib>Viehmann, Eva</creatorcontrib><title>Finiteness Properties of Affine Deligne-Lusztig Varieties</title><title>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</title><description>Affine Deligne-Lusztig varieties are closely related to the special fibre of Newton strata in the reduction of Shimura varieties or of moduli spaces of G -shtukas. In almost all cases, they are not quasi-compact. In this note we prove basic finiteness properties of affine Deligne-Lusztig varieties under minimal assumptions on the associated group. We show that affine Deligne-Lusztig varieties are locally of finite type, and prove a global finiteness result related to the natural group action. Similar results have previously been known for special situations.</description><issn>1431-0635</issn><issn>1431-0643</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9j81Kw0AURgdRsFZ9hqzcxd6bOz-ZZam2CgFdqNuQJveWkSYpM3GhT69FcXW-xeGDo9Q1wq1Gh4uuXzhrT9QMNWEOVtPp_yZzri5SegdAb52ZKb8OQ5h44JSy5zgeOE6BUzZKthQJA2d3vA-7gfPqI31NYZe9NTHw0blUZ9LsE1_9ca5e1_cvq4e8eto8rpZV3mJpprzrCrCd90ZbYqDCb1vQpEsxuiDNLTQOicWDK8GX0mgWEmPIOtoKINJc3fz-tnFMKbLUhxj6Jn7WCPUxuO76-ieYvgFUlUcb</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Hamacher, Paul</creator><creator>Viehmann, Eva</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2020</creationdate><title>Finiteness Properties of Affine Deligne-Lusztig Varieties</title><author>Hamacher, Paul ; Viehmann, Eva</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185t-dd206d995463e0329bc04348f54234ec0a713ef9078098fa4ef3f553673bf0113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamacher, Paul</creatorcontrib><creatorcontrib>Viehmann, Eva</creatorcontrib><collection>CrossRef</collection><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamacher, Paul</au><au>Viehmann, Eva</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finiteness Properties of Affine Deligne-Lusztig Varieties</atitle><jtitle>Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung.</jtitle><date>2020</date><risdate>2020</risdate><volume>25</volume><spage>899</spage><epage>910</epage><pages>899-910</pages><issn>1431-0635</issn><eissn>1431-0643</eissn><abstract>Affine Deligne-Lusztig varieties are closely related to the special fibre of Newton strata in the reduction of Shimura varieties or of moduli spaces of G -shtukas. In almost all cases, they are not quasi-compact. In this note we prove basic finiteness properties of affine Deligne-Lusztig varieties under minimal assumptions on the associated group. We show that affine Deligne-Lusztig varieties are locally of finite type, and prove a global finiteness result related to the natural group action. Similar results have previously been known for special situations.</abstract><doi>10.4171/dm/766</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-0635 |
ispartof | Documenta mathematica Journal der Deutschen Mathematiker-Vereinigung., 2020, Vol.25, p.899-910 |
issn | 1431-0635 1431-0643 |
language | eng |
recordid | cdi_crossref_primary_10_4171_dm_766 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
title | Finiteness Properties of Affine Deligne-Lusztig Varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T05%3A54%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finiteness%20Properties%20of%20Affine%20Deligne-Lusztig%20Varieties&rft.jtitle=Documenta%20mathematica%20Journal%20der%20Deutschen%20Mathematiker-Vereinigung.&rft.au=Hamacher,%20Paul&rft.date=2020&rft.volume=25&rft.spage=899&rft.epage=910&rft.pages=899-910&rft.issn=1431-0635&rft.eissn=1431-0643&rft_id=info:doi/10.4171/dm/766&rft_dat=%3Ccrossref%3E10_4171_dm_766%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |