A generalization of the Oort conjecture

The Oort conjecture (now a theorem of Obus–Wewers and Pop) states that if $k$ is an algebraically closed field of characteristic $p$, then any cyclic branched cover of smooth projective $k$-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture, which states that all cy...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Commentarii mathematici Helvetici 2017-01, Vol.92 (3), p.551-620
1. Verfasser: Obus, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 620
container_issue 3
container_start_page 551
container_title Commentarii mathematici Helvetici
container_volume 92
creator Obus, Andrew
description The Oort conjecture (now a theorem of Obus–Wewers and Pop) states that if $k$ is an algebraically closed field of characteristic $p$, then any cyclic branched cover of smooth projective $k$-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture, which states that all cyclic extensions of $k[[t]]$ lift to characteristic zero. We generalize the local Oort conjecture to the case of Galois extensions with cyclic $p$-Sylow subgroups, reduce the conjecture to a pure characteristic $p$ statement, and prove it in several cases. In particular, we show that $D_9$ is a so-called local Oort group.
doi_str_mv 10.4171/CMH/419
format Article
fullrecord <record><control><sourceid>ems_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4171_cmh_419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_CMH_419</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-e29e3c452b0e176178000565000ffe8935551997d21b830ea5e107a44168fcb33</originalsourceid><addsrcrecordid>eNo9kDFPwzAQhS0EEqUg_kIkhk6hd4kd22MVQYtU1AXmyDFnmqiJkZ0O8OsxFLHc3fDp3XuPsVuEe44Sl_XzZslRn7EZ8gJypXl1zmYACHkhJF6yqxh7AFBS4owtVtk7jRTMofsyU-fHzLts2lO282HKrB97stMx0DW7cOYQ6eZvz9nr48NLvcm3u_VTvdrmttA45VRoKi0XRQuEskKp0idRiTSdI6VLIQRqLd8KbFUJZAQhSMM5VsrZtiznbHHStcHHGMg1H6EbTPhsEJqffI0d9unQibw7kTTEpvfHMCZf_1Rq4Zf6Bt-3S0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A generalization of the Oort conjecture</title><source>European Mathematical Society Publishing House</source><source>e-periodica</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Obus, Andrew</creator><creatorcontrib>Obus, Andrew</creatorcontrib><description>The Oort conjecture (now a theorem of Obus–Wewers and Pop) states that if $k$ is an algebraically closed field of characteristic $p$, then any cyclic branched cover of smooth projective $k$-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture, which states that all cyclic extensions of $k[[t]]$ lift to characteristic zero. We generalize the local Oort conjecture to the case of Galois extensions with cyclic $p$-Sylow subgroups, reduce the conjecture to a pure characteristic $p$ statement, and prove it in several cases. In particular, we show that $D_9$ is a so-called local Oort group.</description><identifier>ISSN: 0010-2571</identifier><identifier>EISSN: 1420-8946</identifier><identifier>DOI: 10.4171/CMH/419</identifier><language>eng</language><publisher>Zuerich, Switzerland: European Mathematical Society Publishing House</publisher><subject>Algebraic geometry ; Commutative rings and algebras ; Field theory and polynomials ; Number theory</subject><ispartof>Commentarii mathematici Helvetici, 2017-01, Vol.92 (3), p.551-620</ispartof><rights>Swiss Mathematical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-e29e3c452b0e176178000565000ffe8935551997d21b830ea5e107a44168fcb33</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,24053,27924,27925</link.rule.ids></links><search><creatorcontrib>Obus, Andrew</creatorcontrib><title>A generalization of the Oort conjecture</title><title>Commentarii mathematici Helvetici</title><addtitle>Comment. Math. Helv</addtitle><description>The Oort conjecture (now a theorem of Obus–Wewers and Pop) states that if $k$ is an algebraically closed field of characteristic $p$, then any cyclic branched cover of smooth projective $k$-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture, which states that all cyclic extensions of $k[[t]]$ lift to characteristic zero. We generalize the local Oort conjecture to the case of Galois extensions with cyclic $p$-Sylow subgroups, reduce the conjecture to a pure characteristic $p$ statement, and prove it in several cases. In particular, we show that $D_9$ is a so-called local Oort group.</description><subject>Algebraic geometry</subject><subject>Commutative rings and algebras</subject><subject>Field theory and polynomials</subject><subject>Number theory</subject><issn>0010-2571</issn><issn>1420-8946</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kDFPwzAQhS0EEqUg_kIkhk6hd4kd22MVQYtU1AXmyDFnmqiJkZ0O8OsxFLHc3fDp3XuPsVuEe44Sl_XzZslRn7EZ8gJypXl1zmYACHkhJF6yqxh7AFBS4owtVtk7jRTMofsyU-fHzLts2lO282HKrB97stMx0DW7cOYQ6eZvz9nr48NLvcm3u_VTvdrmttA45VRoKi0XRQuEskKp0idRiTSdI6VLIQRqLd8KbFUJZAQhSMM5VsrZtiznbHHStcHHGMg1H6EbTPhsEJqffI0d9unQibw7kTTEpvfHMCZf_1Rq4Zf6Bt-3S0w</recordid><startdate>20170101</startdate><enddate>20170101</enddate><creator>Obus, Andrew</creator><general>European Mathematical Society Publishing House</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170101</creationdate><title>A generalization of the Oort conjecture</title><author>Obus, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-e29e3c452b0e176178000565000ffe8935551997d21b830ea5e107a44168fcb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebraic geometry</topic><topic>Commutative rings and algebras</topic><topic>Field theory and polynomials</topic><topic>Number theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obus, Andrew</creatorcontrib><collection>CrossRef</collection><jtitle>Commentarii mathematici Helvetici</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obus, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalization of the Oort conjecture</atitle><jtitle>Commentarii mathematici Helvetici</jtitle><addtitle>Comment. Math. Helv</addtitle><date>2017-01-01</date><risdate>2017</risdate><volume>92</volume><issue>3</issue><spage>551</spage><epage>620</epage><pages>551-620</pages><issn>0010-2571</issn><eissn>1420-8946</eissn><abstract>The Oort conjecture (now a theorem of Obus–Wewers and Pop) states that if $k$ is an algebraically closed field of characteristic $p$, then any cyclic branched cover of smooth projective $k$-curves lifts to characteristic zero. This is equivalent to the local Oort conjecture, which states that all cyclic extensions of $k[[t]]$ lift to characteristic zero. We generalize the local Oort conjecture to the case of Galois extensions with cyclic $p$-Sylow subgroups, reduce the conjecture to a pure characteristic $p$ statement, and prove it in several cases. In particular, we show that $D_9$ is a so-called local Oort group.</abstract><cop>Zuerich, Switzerland</cop><pub>European Mathematical Society Publishing House</pub><doi>10.4171/CMH/419</doi><tpages>70</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0010-2571
ispartof Commentarii mathematici Helvetici, 2017-01, Vol.92 (3), p.551-620
issn 0010-2571
1420-8946
language eng
recordid cdi_crossref_primary_10_4171_cmh_419
source European Mathematical Society Publishing House; e-periodica; EZB-FREE-00999 freely available EZB journals
subjects Algebraic geometry
Commutative rings and algebras
Field theory and polynomials
Number theory
title A generalization of the Oort conjecture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A21%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ems_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalization%20of%20the%20Oort%20conjecture&rft.jtitle=Commentarii%20mathematici%20Helvetici&rft.au=Obus,%20Andrew&rft.date=2017-01-01&rft.volume=92&rft.issue=3&rft.spage=551&rft.epage=620&rft.pages=551-620&rft.issn=0010-2571&rft.eissn=1420-8946&rft_id=info:doi/10.4171/CMH/419&rft_dat=%3Cems_cross%3E10_4171_CMH_419%3C/ems_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true