Chromatic zeros on hierarchical lattices and equidistribution on parameter space

Associated to any finite simple graph \Gamma is the chromatic polynomial \mathcal{P}_\Gamma(q) whose complex zeros are called the chromatic zeros of \Gamma . A hierarchical lattice is a sequence of finite simple graphs \{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions physics and their interactions, 2021-01, Vol.8 (4), p.491-536
Hauptverfasser: Chio, Ivan, Roeder, Roland K.W.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 536
container_issue 4
container_start_page 491
container_title Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions
container_volume 8
creator Chio, Ivan
Roeder, Roland K.W.
description Associated to any finite simple graph \Gamma is the chromatic polynomial \mathcal{P}_\Gamma(q) whose complex zeros are called the chromatic zeros of \Gamma . A hierarchical lattice is a sequence of finite simple graphs \{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed in terms of a generating graph. For each n , let \mu_n denote the probability measure that assigns a Dirac measure to each chromatic zero of \Gamma_n . Under a mild hypothesis on the generating graph, we prove that the sequence \mu_n converges to some measure \mu as n tends to infinity. We call \mu the limiting measure of chromatic zeros associated to \{\Gamma_n\}_{n=0}^\infty . In the case of the diamond hierarchical lattice we prove that the support of \mu has Hausdorff dimension two. The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove a new equidistribution theorem that can be used to relate the chromatic zeros of a hierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications.
doi_str_mv 10.4171/aihpd/109
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4171_aihpd_109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4171_aihpd_109</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-cfd1ac32aceff70fc3d34f99c03d85c3a5c5b61f21c391a63eeda2b16043144c3</originalsourceid><addsrcrecordid>eNo9UMtKBDEQDKLgsu7BP8jVw7hJOpnHUQZfsKAHPQ89nYSJ7OyMSfagX-_4QCjoKrq6aIqxSymutazkFsMw260UzQlbKRB1YWowp_9cVedsk9KbEEIJCVCbFXtuhziNmAPxTxenxKcDH4KLGGkIhHu-x7wsXeJ4sNy9H4MNKcfQH3NYrAtmjDi67CJPM5K7YGce98lt_uaavd7dvrQPxe7p_rG92RUEQueCvJVIoJYL7yvhCSxo3zQkwNaGAA2ZvpReSYJGYgnOWVS9LIUGqTXBml395tLydYrOd3MMI8aPToruu43up41FNfAFhUNVGA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Chromatic zeros on hierarchical lattices and equidistribution on parameter space</title><source>European Mathematical Society Publishing House</source><creator>Chio, Ivan ; Roeder, Roland K.W.</creator><creatorcontrib>Chio, Ivan ; Roeder, Roland K.W.</creatorcontrib><description>Associated to any finite simple graph \Gamma is the chromatic polynomial \mathcal{P}_\Gamma(q) whose complex zeros are called the chromatic zeros of \Gamma . A hierarchical lattice is a sequence of finite simple graphs \{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed in terms of a generating graph. For each n , let \mu_n denote the probability measure that assigns a Dirac measure to each chromatic zero of \Gamma_n . Under a mild hypothesis on the generating graph, we prove that the sequence \mu_n converges to some measure \mu as n tends to infinity. We call \mu the limiting measure of chromatic zeros associated to \{\Gamma_n\}_{n=0}^\infty . In the case of the diamond hierarchical lattice we prove that the support of \mu has Hausdorff dimension two. The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove a new equidistribution theorem that can be used to relate the chromatic zeros of a hierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications.</description><identifier>ISSN: 2308-5827</identifier><identifier>EISSN: 2308-5835</identifier><identifier>DOI: 10.4171/aihpd/109</identifier><language>eng</language><ispartof>Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions, 2021-01, Vol.8 (4), p.491-536</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c304t-cfd1ac32aceff70fc3d34f99c03d85c3a5c5b61f21c391a63eeda2b16043144c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chio, Ivan</creatorcontrib><creatorcontrib>Roeder, Roland K.W.</creatorcontrib><title>Chromatic zeros on hierarchical lattices and equidistribution on parameter space</title><title>Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions</title><description>Associated to any finite simple graph \Gamma is the chromatic polynomial \mathcal{P}_\Gamma(q) whose complex zeros are called the chromatic zeros of \Gamma . A hierarchical lattice is a sequence of finite simple graphs \{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed in terms of a generating graph. For each n , let \mu_n denote the probability measure that assigns a Dirac measure to each chromatic zero of \Gamma_n . Under a mild hypothesis on the generating graph, we prove that the sequence \mu_n converges to some measure \mu as n tends to infinity. We call \mu the limiting measure of chromatic zeros associated to \{\Gamma_n\}_{n=0}^\infty . In the case of the diamond hierarchical lattice we prove that the support of \mu has Hausdorff dimension two. The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove a new equidistribution theorem that can be used to relate the chromatic zeros of a hierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications.</description><issn>2308-5827</issn><issn>2308-5835</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9UMtKBDEQDKLgsu7BP8jVw7hJOpnHUQZfsKAHPQ89nYSJ7OyMSfagX-_4QCjoKrq6aIqxSymutazkFsMw260UzQlbKRB1YWowp_9cVedsk9KbEEIJCVCbFXtuhziNmAPxTxenxKcDH4KLGGkIhHu-x7wsXeJ4sNy9H4MNKcfQH3NYrAtmjDi67CJPM5K7YGce98lt_uaavd7dvrQPxe7p_rG92RUEQueCvJVIoJYL7yvhCSxo3zQkwNaGAA2ZvpReSYJGYgnOWVS9LIUGqTXBml395tLydYrOd3MMI8aPToruu43up41FNfAFhUNVGA</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Chio, Ivan</creator><creator>Roeder, Roland K.W.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Chromatic zeros on hierarchical lattices and equidistribution on parameter space</title><author>Chio, Ivan ; Roeder, Roland K.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-cfd1ac32aceff70fc3d34f99c03d85c3a5c5b61f21c391a63eeda2b16043144c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Chio, Ivan</creatorcontrib><creatorcontrib>Roeder, Roland K.W.</creatorcontrib><collection>CrossRef</collection><jtitle>Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chio, Ivan</au><au>Roeder, Roland K.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromatic zeros on hierarchical lattices and equidistribution on parameter space</atitle><jtitle>Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>8</volume><issue>4</issue><spage>491</spage><epage>536</epage><pages>491-536</pages><issn>2308-5827</issn><eissn>2308-5835</eissn><abstract>Associated to any finite simple graph \Gamma is the chromatic polynomial \mathcal{P}_\Gamma(q) whose complex zeros are called the chromatic zeros of \Gamma . A hierarchical lattice is a sequence of finite simple graphs \{\Gamma_n\}_{n=0}^\infty built recursively using a substitution rule expressed in terms of a generating graph. For each n , let \mu_n denote the probability measure that assigns a Dirac measure to each chromatic zero of \Gamma_n . Under a mild hypothesis on the generating graph, we prove that the sequence \mu_n converges to some measure \mu as n tends to infinity. We call \mu the limiting measure of chromatic zeros associated to \{\Gamma_n\}_{n=0}^\infty . In the case of the diamond hierarchical lattice we prove that the support of \mu has Hausdorff dimension two. The main techniques used come from holomorphic dynamics and more specifically the theories of activity/bifurcation currents and arithmetic dynamics. We prove a new equidistribution theorem that can be used to relate the chromatic zeros of a hierarchical lattice to the activity current of a particular marked point. We expect that this equidistribution theorem will have several other applications.</abstract><doi>10.4171/aihpd/109</doi><tpages>46</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2308-5827
ispartof Annales de l'Institut Henri Poincaré. D. Combinatorics, physics and their interactions, 2021-01, Vol.8 (4), p.491-536
issn 2308-5827
2308-5835
language eng
recordid cdi_crossref_primary_10_4171_aihpd_109
source European Mathematical Society Publishing House
title Chromatic zeros on hierarchical lattices and equidistribution on parameter space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A46%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromatic%20zeros%20on%20hierarchical%20lattices%20and%20equidistribution%20on%20parameter%20space&rft.jtitle=Annales%20de%20l'Institut%20Henri%20Poincar%C3%A9.%20D.%20Combinatorics,%20physics%20and%20their%20interactions&rft.au=Chio,%20Ivan&rft.date=2021-01-01&rft.volume=8&rft.issue=4&rft.spage=491&rft.epage=536&rft.pages=491-536&rft.issn=2308-5827&rft.eissn=2308-5835&rft_id=info:doi/10.4171/aihpd/109&rft_dat=%3Ccrossref%3E10_4171_aihpd_109%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true