Finite Quantum Measure Spaces
Quantum measure spaces possess a certain "quantum weirdness" and lack some of the simplicity and intuitive nature of their classical counterparts. Much of this unusual behavior is due to a phenomenon called quantum interference, which is a recurrent theme in the present article. Because of...
Gespeichert in:
Veröffentlicht in: | The American mathematical monthly 2010-06, Vol.117 (6), p.512-527 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 527 |
---|---|
container_issue | 6 |
container_start_page | 512 |
container_title | The American mathematical monthly |
container_volume | 117 |
creator | Gudder, Stan |
description | Quantum measure spaces possess a certain "quantum weirdness" and lack some of the simplicity and intuitive nature of their classical counterparts. Much of this unusual behavior is due to a phenomenon called quantum interference, which is a recurrent theme in the present article. Because of this interference, quantum measures need not be additive but satisfy a more general condition called grade-2 additivity. Examples of quantum measure spaces such as "quantum coins" and particle-an tip article pairs are considered. Even more general spaces called super-quantum measure spaces are discussed. You don't need quantum mechanics or measure theory to understand this article. |
doi_str_mv | 10.4169/000298910X492808 |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4169_000298910x492808</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>10.4169/000298910x492808</jstor_id><sourcerecordid>10.4169/000298910x492808</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-a35b68be1b2e7a623173e0342242d766f8918b19b7406391432de5308e8139363</originalsourceid><addsrcrecordid>eNp1j11LwzAUhoMoWKf33gj9A9GTnDRN8EqGm8LGEBV2F9I2hY5-jKRF9-_tqOxuV4fD-zyH8xJyz-BRMKmfAIBrpRlsheYK1AWJmEagoFN-SaJjTMccrslNCLtxhUTwiDwsqrbqXfwx2LYfmnjtbBi8iz_3NnfhllyVtg7u7n_OyPfi9Wv-Rleb5fv8ZUVzVNBTi0kmVeZYxl1qJUeWogMUnAtepFKW418qYzpLBUjUTCAvXIKgnGKoUeKMwHQ3910I3pVm76vG-oNhYI71zKne71RvVOik7ELf-fP89sQ_T3zVlp1v7E_n68L09lB3vvS2zatg8Kz9B3ZCX1k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Finite Quantum Measure Spaces</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><source>JSTOR Mathematics & Statistics</source><creator>Gudder, Stan</creator><creatorcontrib>Gudder, Stan</creatorcontrib><description>Quantum measure spaces possess a certain "quantum weirdness" and lack some of the simplicity and intuitive nature of their classical counterparts. Much of this unusual behavior is due to a phenomenon called quantum interference, which is a recurrent theme in the present article. Because of this interference, quantum measures need not be additive but satisfy a more general condition called grade-2 additivity. Examples of quantum measure spaces such as "quantum coins" and particle-an tip article pairs are considered. Even more general spaces called super-quantum measure spaces are discussed. You don't need quantum mechanics or measure theory to understand this article.</description><identifier>ISSN: 0002-9890</identifier><identifier>EISSN: 1930-0972</identifier><identifier>DOI: 10.4169/000298910X492808</identifier><language>eng</language><publisher>Taylor & Francis</publisher><subject>Abstract spaces ; Additivity ; Mathematical functions ; Mathematical theorems ; Measure theory ; Particle diffraction ; Probability theory ; Quantum decoherence ; Quantum mechanics ; Subatomic particles</subject><ispartof>The American mathematical monthly, 2010-06, Vol.117 (6), p.512-527</ispartof><rights>Copyright Taylor & Francis</rights><rights>Copyright 2010 The Mathematical Association of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-a35b68be1b2e7a623173e0342242d766f8918b19b7406391432de5308e8139363</citedby><cites>FETCH-LOGICAL-c380t-a35b68be1b2e7a623173e0342242d766f8918b19b7406391432de5308e8139363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,799,828,27901,27902</link.rule.ids></links><search><creatorcontrib>Gudder, Stan</creatorcontrib><title>Finite Quantum Measure Spaces</title><title>The American mathematical monthly</title><description>Quantum measure spaces possess a certain "quantum weirdness" and lack some of the simplicity and intuitive nature of their classical counterparts. Much of this unusual behavior is due to a phenomenon called quantum interference, which is a recurrent theme in the present article. Because of this interference, quantum measures need not be additive but satisfy a more general condition called grade-2 additivity. Examples of quantum measure spaces such as "quantum coins" and particle-an tip article pairs are considered. Even more general spaces called super-quantum measure spaces are discussed. You don't need quantum mechanics or measure theory to understand this article.</description><subject>Abstract spaces</subject><subject>Additivity</subject><subject>Mathematical functions</subject><subject>Mathematical theorems</subject><subject>Measure theory</subject><subject>Particle diffraction</subject><subject>Probability theory</subject><subject>Quantum decoherence</subject><subject>Quantum mechanics</subject><subject>Subatomic particles</subject><issn>0002-9890</issn><issn>1930-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1j11LwzAUhoMoWKf33gj9A9GTnDRN8EqGm8LGEBV2F9I2hY5-jKRF9-_tqOxuV4fD-zyH8xJyz-BRMKmfAIBrpRlsheYK1AWJmEagoFN-SaJjTMccrslNCLtxhUTwiDwsqrbqXfwx2LYfmnjtbBi8iz_3NnfhllyVtg7u7n_OyPfi9Wv-Rleb5fv8ZUVzVNBTi0kmVeZYxl1qJUeWogMUnAtepFKW418qYzpLBUjUTCAvXIKgnGKoUeKMwHQ3910I3pVm76vG-oNhYI71zKne71RvVOik7ELf-fP89sQ_T3zVlp1v7E_n68L09lB3vvS2zatg8Kz9B3ZCX1k</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Gudder, Stan</creator><general>Taylor & Francis</general><general>Mathematical Association of America</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20100601</creationdate><title>Finite Quantum Measure Spaces</title><author>Gudder, Stan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-a35b68be1b2e7a623173e0342242d766f8918b19b7406391432de5308e8139363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Abstract spaces</topic><topic>Additivity</topic><topic>Mathematical functions</topic><topic>Mathematical theorems</topic><topic>Measure theory</topic><topic>Particle diffraction</topic><topic>Probability theory</topic><topic>Quantum decoherence</topic><topic>Quantum mechanics</topic><topic>Subatomic particles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gudder, Stan</creatorcontrib><collection>CrossRef</collection><jtitle>The American mathematical monthly</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gudder, Stan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite Quantum Measure Spaces</atitle><jtitle>The American mathematical monthly</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>117</volume><issue>6</issue><spage>512</spage><epage>527</epage><pages>512-527</pages><issn>0002-9890</issn><eissn>1930-0972</eissn><abstract>Quantum measure spaces possess a certain "quantum weirdness" and lack some of the simplicity and intuitive nature of their classical counterparts. Much of this unusual behavior is due to a phenomenon called quantum interference, which is a recurrent theme in the present article. Because of this interference, quantum measures need not be additive but satisfy a more general condition called grade-2 additivity. Examples of quantum measure spaces such as "quantum coins" and particle-an tip article pairs are considered. Even more general spaces called super-quantum measure spaces are discussed. You don't need quantum mechanics or measure theory to understand this article.</abstract><pub>Taylor & Francis</pub><doi>10.4169/000298910X492808</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0002-9890 |
ispartof | The American mathematical monthly, 2010-06, Vol.117 (6), p.512-527 |
issn | 0002-9890 1930-0972 |
language | eng |
recordid | cdi_crossref_primary_10_4169_000298910x492808 |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection; JSTOR Mathematics & Statistics |
subjects | Abstract spaces Additivity Mathematical functions Mathematical theorems Measure theory Particle diffraction Probability theory Quantum decoherence Quantum mechanics Subatomic particles |
title | Finite Quantum Measure Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T20%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20Quantum%20Measure%20Spaces&rft.jtitle=The%20American%20mathematical%20monthly&rft.au=Gudder,%20Stan&rft.date=2010-06-01&rft.volume=117&rft.issue=6&rft.spage=512&rft.epage=527&rft.pages=512-527&rft.issn=0002-9890&rft.eissn=1930-0972&rft_id=info:doi/10.4169/000298910X492808&rft_dat=%3Cjstor_cross%3E10.4169/000298910x492808%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=10.4169/000298910x492808&rfr_iscdi=true |