Chromosomes without a 30-nm chromatin fiber

How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when froze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleus (Austin, Tex.) Tex.), 2012-09, Vol.3 (5), p.404-410
Hauptverfasser: Joti, Yasumasa, Hikima, Takaaki, Nishino, Yoshinori, Kamada, Fukumi, Hihara, Saera, Takata, Hideaki, Ishikawa, Tetsuya, Maeshima, Kazuhiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 410
container_issue 5
container_start_page 404
container_title Nucleus (Austin, Tex.)
container_volume 3
creator Joti, Yasumasa
Hikima, Takaaki
Nishino, Yoshinori
Kamada, Fukumi
Hihara, Saera
Takata, Hideaki
Ishikawa, Tetsuya
Maeshima, Kazuhiro
description How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure.
doi_str_mv 10.4161/nucl.21222
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4161_nucl_21222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1082236716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c684t-39f722be0f78d9e99c0f0560af560a74406b59f0647294d6b3f31bb61e07989a3</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4NYbGn74h8g-yjKtskkm2xeBDnqDzgqqPccstnEi-wmZ7Lb0v_erHeeCkLzkAzMZ77znQxCzwm-YoST6zCb4QoIADxBZ0QyWRPM4OkxpuwUXeb8HZfDmMANeYZOAVpoGkHO0OvVNsUx5jjaXN37aRvnqdIVxXUYK7Pk9ORD5Xxn0wU6cXrI9vLwnqPNu5uvqw_1-tP7j6u369rwlk01lU4AdBY70fbSSmmwww3H2i2XYAzzrpEOcyZAsp531FHSdZxYLGQrNT1Hb_a6u7kbbW9smJIe1C75UacHFbVX_2aC36pv8U5RJhhvZBF4eRBI8cds86RGn40dBh1snLOCBhgAZ5w-ihLcAlAuCC_oqz1qUsw5WXd0RLBadqGWXahfuyjwi79nOKK_f74AbA-UTr3NnY_ZeBuM_YNiAreb1fpm8wVjIj6rXe9KWfNI2WLCFuc6Tb5ERz-HOh9cTKO-j2no1aQfhphc0sH4rOh_5vgJDAm7Xg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1082236716</pqid></control><display><type>article</type><title>Chromosomes without a 30-nm chromatin fiber</title><source>Taylor &amp; Francis Open Access</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Joti, Yasumasa ; Hikima, Takaaki ; Nishino, Yoshinori ; Kamada, Fukumi ; Hihara, Saera ; Takata, Hideaki ; Ishikawa, Tetsuya ; Maeshima, Kazuhiro</creator><creatorcontrib>Joti, Yasumasa ; Hikima, Takaaki ; Nishino, Yoshinori ; Kamada, Fukumi ; Hihara, Saera ; Takata, Hideaki ; Ishikawa, Tetsuya ; Maeshima, Kazuhiro</creatorcontrib><description>How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure.</description><identifier>ISSN: 1949-1034</identifier><identifier>ISSN: 1949-1042</identifier><identifier>EISSN: 1949-1042</identifier><identifier>DOI: 10.4161/nucl.21222</identifier><identifier>PMID: 22825571</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>30-nm chromatin fiber ; Binding ; Biology ; Bioscience ; Calcium ; Cancer ; Cell ; Cell Nucleus - metabolism ; chromatin ; Chromatin - chemistry ; Chromatin - metabolism ; Chromosome Structures - chemistry ; Chromosome Structures - metabolism ; cryo-electron microscopy ; cryo-EM ; Cycle ; DNA ; Extra View ; fractal nature ; HeLa Cells ; histones ; Histones - chemistry ; Histones - metabolism ; Humans ; Interphase ; interphase nuclei ; irregular folding ; Landes ; Mitosis ; mitotic chromosomes ; nucleosomes ; Nucleosomes - chemistry ; Nucleosomes - metabolism ; Organogenesis ; Proteins ; Scattering, Small Angle ; small-angle X-ray scattering ; X-Ray Diffraction ; X-ray scattering</subject><ispartof>Nucleus (Austin, Tex.), 2012-09, Vol.3 (5), p.404-410</ispartof><rights>Copyright © 2012 Landes Bioscience 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c684t-39f722be0f78d9e99c0f0560af560a74406b59f0647294d6b3f31bb61e07989a3</citedby><cites>FETCH-LOGICAL-c684t-39f722be0f78d9e99c0f0560af560a74406b59f0647294d6b3f31bb61e07989a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474659/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3474659/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27479,27901,27902,53766,53768,59116,59117</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22825571$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Hikima, Takaaki</creatorcontrib><creatorcontrib>Nishino, Yoshinori</creatorcontrib><creatorcontrib>Kamada, Fukumi</creatorcontrib><creatorcontrib>Hihara, Saera</creatorcontrib><creatorcontrib>Takata, Hideaki</creatorcontrib><creatorcontrib>Ishikawa, Tetsuya</creatorcontrib><creatorcontrib>Maeshima, Kazuhiro</creatorcontrib><title>Chromosomes without a 30-nm chromatin fiber</title><title>Nucleus (Austin, Tex.)</title><addtitle>Nucleus</addtitle><description>How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure.</description><subject>30-nm chromatin fiber</subject><subject>Binding</subject><subject>Biology</subject><subject>Bioscience</subject><subject>Calcium</subject><subject>Cancer</subject><subject>Cell</subject><subject>Cell Nucleus - metabolism</subject><subject>chromatin</subject><subject>Chromatin - chemistry</subject><subject>Chromatin - metabolism</subject><subject>Chromosome Structures - chemistry</subject><subject>Chromosome Structures - metabolism</subject><subject>cryo-electron microscopy</subject><subject>cryo-EM</subject><subject>Cycle</subject><subject>DNA</subject><subject>Extra View</subject><subject>fractal nature</subject><subject>HeLa Cells</subject><subject>histones</subject><subject>Histones - chemistry</subject><subject>Histones - metabolism</subject><subject>Humans</subject><subject>Interphase</subject><subject>interphase nuclei</subject><subject>irregular folding</subject><subject>Landes</subject><subject>Mitosis</subject><subject>mitotic chromosomes</subject><subject>nucleosomes</subject><subject>Nucleosomes - chemistry</subject><subject>Nucleosomes - metabolism</subject><subject>Organogenesis</subject><subject>Proteins</subject><subject>Scattering, Small Angle</subject><subject>small-angle X-ray scattering</subject><subject>X-Ray Diffraction</subject><subject>X-ray scattering</subject><issn>1949-1034</issn><issn>1949-1042</issn><issn>1949-1042</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><sourceid>EIF</sourceid><recordid>eNqFkd9rFDEQx4NYbGn74h8g-yjKtskkm2xeBDnqDzgqqPccstnEi-wmZ7Lb0v_erHeeCkLzkAzMZ77znQxCzwm-YoST6zCb4QoIADxBZ0QyWRPM4OkxpuwUXeb8HZfDmMANeYZOAVpoGkHO0OvVNsUx5jjaXN37aRvnqdIVxXUYK7Pk9ORD5Xxn0wU6cXrI9vLwnqPNu5uvqw_1-tP7j6u369rwlk01lU4AdBY70fbSSmmwww3H2i2XYAzzrpEOcyZAsp531FHSdZxYLGQrNT1Hb_a6u7kbbW9smJIe1C75UacHFbVX_2aC36pv8U5RJhhvZBF4eRBI8cds86RGn40dBh1snLOCBhgAZ5w-ihLcAlAuCC_oqz1qUsw5WXd0RLBadqGWXahfuyjwi79nOKK_f74AbA-UTr3NnY_ZeBuM_YNiAreb1fpm8wVjIj6rXe9KWfNI2WLCFuc6Tb5ERz-HOh9cTKO-j2no1aQfhphc0sH4rOh_5vgJDAm7Xg</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Joti, Yasumasa</creator><creator>Hikima, Takaaki</creator><creator>Nishino, Yoshinori</creator><creator>Kamada, Fukumi</creator><creator>Hihara, Saera</creator><creator>Takata, Hideaki</creator><creator>Ishikawa, Tetsuya</creator><creator>Maeshima, Kazuhiro</creator><general>Taylor &amp; Francis</general><general>Landes Bioscience</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope></search><sort><creationdate>20120901</creationdate><title>Chromosomes without a 30-nm chromatin fiber</title><author>Joti, Yasumasa ; Hikima, Takaaki ; Nishino, Yoshinori ; Kamada, Fukumi ; Hihara, Saera ; Takata, Hideaki ; Ishikawa, Tetsuya ; Maeshima, Kazuhiro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c684t-39f722be0f78d9e99c0f0560af560a74406b59f0647294d6b3f31bb61e07989a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>30-nm chromatin fiber</topic><topic>Binding</topic><topic>Biology</topic><topic>Bioscience</topic><topic>Calcium</topic><topic>Cancer</topic><topic>Cell</topic><topic>Cell Nucleus - metabolism</topic><topic>chromatin</topic><topic>Chromatin - chemistry</topic><topic>Chromatin - metabolism</topic><topic>Chromosome Structures - chemistry</topic><topic>Chromosome Structures - metabolism</topic><topic>cryo-electron microscopy</topic><topic>cryo-EM</topic><topic>Cycle</topic><topic>DNA</topic><topic>Extra View</topic><topic>fractal nature</topic><topic>HeLa Cells</topic><topic>histones</topic><topic>Histones - chemistry</topic><topic>Histones - metabolism</topic><topic>Humans</topic><topic>Interphase</topic><topic>interphase nuclei</topic><topic>irregular folding</topic><topic>Landes</topic><topic>Mitosis</topic><topic>mitotic chromosomes</topic><topic>nucleosomes</topic><topic>Nucleosomes - chemistry</topic><topic>Nucleosomes - metabolism</topic><topic>Organogenesis</topic><topic>Proteins</topic><topic>Scattering, Small Angle</topic><topic>small-angle X-ray scattering</topic><topic>X-Ray Diffraction</topic><topic>X-ray scattering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joti, Yasumasa</creatorcontrib><creatorcontrib>Hikima, Takaaki</creatorcontrib><creatorcontrib>Nishino, Yoshinori</creatorcontrib><creatorcontrib>Kamada, Fukumi</creatorcontrib><creatorcontrib>Hihara, Saera</creatorcontrib><creatorcontrib>Takata, Hideaki</creatorcontrib><creatorcontrib>Ishikawa, Tetsuya</creatorcontrib><creatorcontrib>Maeshima, Kazuhiro</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleus (Austin, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joti, Yasumasa</au><au>Hikima, Takaaki</au><au>Nishino, Yoshinori</au><au>Kamada, Fukumi</au><au>Hihara, Saera</au><au>Takata, Hideaki</au><au>Ishikawa, Tetsuya</au><au>Maeshima, Kazuhiro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chromosomes without a 30-nm chromatin fiber</atitle><jtitle>Nucleus (Austin, Tex.)</jtitle><addtitle>Nucleus</addtitle><date>2012-09-01</date><risdate>2012</risdate><volume>3</volume><issue>5</issue><spage>404</spage><epage>410</epage><pages>404-410</pages><issn>1949-1034</issn><issn>1949-1042</issn><eissn>1949-1042</eissn><abstract>How is a long strand of genomic DNA packaged into a mitotic chromosome or nucleus? The nucleosome fiber (beads-on-a-string), in which DNA is wrapped around core histones, has long been assumed to be folded into a 30-nm chromatin fiber, and a further helically folded larger fiber. However, when frozen hydrated human mitotic cells were observed using cryoelectron microscopy, no higher-order structures that included 30-nm chromatin fibers were found. To investigate the bulk structure of mitotic chromosomes further, we performed small-angle X-ray scattering (SAXS), which can detect periodic structures in noncrystalline materials in solution. The results were striking: no structural feature larger than 11 nm was detected, even at a chromosome-diameter scale (~1 μm). We also found a similar scattering pattern in interphase nuclei of HeLa cells in the range up to ~275 nm. Our findings suggest a common structural feature in interphase and mitotic chromatins: compact and irregular folding of nucleosome fibers occurs without a 30-nm chromatin structure.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>22825571</pmid><doi>10.4161/nucl.21222</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1949-1034
ispartof Nucleus (Austin, Tex.), 2012-09, Vol.3 (5), p.404-410
issn 1949-1034
1949-1042
1949-1042
language eng
recordid cdi_crossref_primary_10_4161_nucl_21222
source Taylor & Francis Open Access; MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects 30-nm chromatin fiber
Binding
Biology
Bioscience
Calcium
Cancer
Cell
Cell Nucleus - metabolism
chromatin
Chromatin - chemistry
Chromatin - metabolism
Chromosome Structures - chemistry
Chromosome Structures - metabolism
cryo-electron microscopy
cryo-EM
Cycle
DNA
Extra View
fractal nature
HeLa Cells
histones
Histones - chemistry
Histones - metabolism
Humans
Interphase
interphase nuclei
irregular folding
Landes
Mitosis
mitotic chromosomes
nucleosomes
Nucleosomes - chemistry
Nucleosomes - metabolism
Organogenesis
Proteins
Scattering, Small Angle
small-angle X-ray scattering
X-Ray Diffraction
X-ray scattering
title Chromosomes without a 30-nm chromatin fiber
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T22%3A40%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chromosomes%20without%20a%2030-nm%20chromatin%20fiber&rft.jtitle=Nucleus%20(Austin,%20Tex.)&rft.au=Joti,%20Yasumasa&rft.date=2012-09-01&rft.volume=3&rft.issue=5&rft.spage=404&rft.epage=410&rft.pages=404-410&rft.issn=1949-1034&rft.eissn=1949-1042&rft_id=info:doi/10.4161/nucl.21222&rft_dat=%3Cproquest_cross%3E1082236716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1082236716&rft_id=info:pmid/22825571&rfr_iscdi=true