Distinct heparan sulfate compositions in wild-type and pipe-mutant eggshell matrix

Spatial information embedded in the extracellular matrix establishes the dorsoventral polarity of the Drosophila embryo through the ventral activity of a serine protease cascade. Pipe is a Golgi-localized protein responsible for generating this spatial information during oogenesis through sulfation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Fly (Austin, Tex.) Tex.), 2008-07, Vol.2 (4), p.175-179
Hauptverfasser: Park, Youmie, Zhang, Zhenqing, Linhardt, Robert J, LeMosy, Ellen K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Spatial information embedded in the extracellular matrix establishes the dorsoventral polarity of the Drosophila embryo through the ventral activity of a serine protease cascade. Pipe is a Golgi-localized protein responsible for generating this spatial information during oogenesis through sulfation of unknown glycans. Although Pipe has sequence homology to glycosaminoglycan 2-O-sulfotransferases, its activity and authentic substrates have not been demonstrated and genetic evidence has argued against a role for glycosaminoglycans in dorsoventral polarity establishment. Here, direct examination of matrix glycosaminoglycans demonstrates that pipe-mutant matrix shows decreased tri-sulfated heparan sulfate compared to wild-type matrix, with correspondingly increased 2-O-sulfated heparan sulfate. Chondroitin sulfate was not detected in this matrix. These results suggest that Pipe promotes 6-O- and/or N-sulfation of heparan sulfate but is not required for heparan sulfate 2-O-sulfation. We discuss the possible significance of these unexpected findings and how they might be reconciled with the genetic data.
ISSN:1933-6934
1933-6942
DOI:10.4161/fly.6706