Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway
SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important rol...
Gespeichert in:
Veröffentlicht in: | Autophagy 2014-02, Vol.10 (2), p.226-242 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 242 |
---|---|
container_issue | 2 |
container_start_page | 226 |
container_title | Autophagy |
container_volume | 10 |
creator | Tan, Shi-Hao Shui, Guanghou Zhou, Jing Shi, Yin Huang, Jingxiang Xia, Dajing Wenk, Markus R Shen, Han-Ming |
description | SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2
−/−
mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2
−/−
MEFs compared with Tsc2
+/+
MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2
−/−
MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2
−/−
MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway. |
doi_str_mv | 10.4161/auto.27003 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4161_auto_27003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499122277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoMotlZv_AGSSxGm5mMy2dwIZWu1WNgLK3gXzuZjNpJNpslMy_57Z926WPAqJ5yH5xzOi9BbSs5b2tGPMI35nElC-DN0SoVom0XHxfNjzeQJelXrrxnoFoq9RCesZaoTXJ6iu2UJYzAQccnR4ezx9-UlxSHhvXXYQL_DxfVThDHkhO8D4BiG3LvkaqgYkt3_g8UF_Fgbk6chOosvvt02V6ufK4pr6BPEkHo8wLh5gN1r9MJDrO7N43uGflx9vl1-bW5WX66XFzeNaRUZm7VqObGESOMdF0IJb52RTBpGhQdnWm4cByUsVVatu851fsGlbDsl5cwZfoY-HbzDtN46a1waC0Q9lLCFstMZgn7aSWGj-3yvBVcdkWoWvH8UlHw3uTrqbajGxQjJ5alq2ipFGWNSzuiHA2pKrrU4fxxDid5npPfX1H8ymuF3_y52RP-GMgPiAITkc9nCQy7R6hF2MRdfIJlQNf-P-DeYyqGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499122277</pqid></control><display><type>article</type><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><source>PubMed Central Free</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</creator><creatorcontrib>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</creatorcontrib><description>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2
−/−
mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2
−/−
MEFs compared with Tsc2
+/+
MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2
−/−
MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2
−/−
MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.4161/auto.27003</identifier><identifier>PMID: 24296537</identifier><language>eng</language><publisher>United States: Taylor & Francis</publisher><subject>Acyl Coenzyme A - metabolism ; AKT ; Animals ; Apoptosis - genetics ; Apoptosis - physiology ; autophagy ; Autophagy - genetics ; Autophagy - physiology ; Basic Research Paper ; Cells, Cultured ; Forkhead Box Protein O1 ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; FOXO1 ; Lipid Metabolism - genetics ; Lipid Metabolism - physiology ; lipid rafts ; lipogenesis ; Lipogenesis - genetics ; Lipogenesis - physiology ; Mechanistic Target of Rapamycin Complex 1 ; Mechanistic Target of Rapamycin Complex 2 ; Mice ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; SCD1 ; Signal Transduction - genetics ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; TSC2 ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Autophagy, 2014-02, Vol.10 (2), p.226-242</ispartof><rights>Copyright © 2014 Landes Bioscience 2014</rights><rights>Copyright © 2014 Landes Bioscience 2014 Landes Bioscience</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</citedby><cites>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396079/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396079/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24296537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shi-Hao</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Huang, Jingxiang</creatorcontrib><creatorcontrib>Xia, Dajing</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Shen, Han-Ming</creatorcontrib><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2
−/−
mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2
−/−
MEFs compared with Tsc2
+/+
MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2
−/−
MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2
−/−
MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</description><subject>Acyl Coenzyme A - metabolism</subject><subject>AKT</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy - physiology</subject><subject>Basic Research Paper</subject><subject>Cells, Cultured</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>FOXO1</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipid Metabolism - physiology</subject><subject>lipid rafts</subject><subject>lipogenesis</subject><subject>Lipogenesis - genetics</subject><subject>Lipogenesis - physiology</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Mice</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>SCD1</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>TSC2</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkV1rFDEUhoMotlZv_AGSSxGm5mMy2dwIZWu1WNgLK3gXzuZjNpJNpslMy_57Z926WPAqJ5yH5xzOi9BbSs5b2tGPMI35nElC-DN0SoVom0XHxfNjzeQJelXrrxnoFoq9RCesZaoTXJ6iu2UJYzAQccnR4ezx9-UlxSHhvXXYQL_DxfVThDHkhO8D4BiG3LvkaqgYkt3_g8UF_Fgbk6chOosvvt02V6ufK4pr6BPEkHo8wLh5gN1r9MJDrO7N43uGflx9vl1-bW5WX66XFzeNaRUZm7VqObGESOMdF0IJb52RTBpGhQdnWm4cByUsVVatu851fsGlbDsl5cwZfoY-HbzDtN46a1waC0Q9lLCFstMZgn7aSWGj-3yvBVcdkWoWvH8UlHw3uTrqbajGxQjJ5alq2ipFGWNSzuiHA2pKrrU4fxxDid5npPfX1H8ymuF3_y52RP-GMgPiAITkc9nCQy7R6hF2MRdfIJlQNf-P-DeYyqGk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Tan, Shi-Hao</creator><creator>Shui, Guanghou</creator><creator>Zhou, Jing</creator><creator>Shi, Yin</creator><creator>Huang, Jingxiang</creator><creator>Xia, Dajing</creator><creator>Wenk, Markus R</creator><creator>Shen, Han-Ming</creator><general>Taylor & Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><author>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acyl Coenzyme A - metabolism</topic><topic>AKT</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy - physiology</topic><topic>Basic Research Paper</topic><topic>Cells, Cultured</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>FOXO1</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipid Metabolism - physiology</topic><topic>lipid rafts</topic><topic>lipogenesis</topic><topic>Lipogenesis - genetics</topic><topic>Lipogenesis - physiology</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Mice</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>SCD1</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>TSC2</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shi-Hao</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Huang, Jingxiang</creatorcontrib><creatorcontrib>Xia, Dajing</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Shen, Han-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shi-Hao</au><au>Shui, Guanghou</au><au>Zhou, Jing</au><au>Shi, Yin</au><au>Huang, Jingxiang</au><au>Xia, Dajing</au><au>Wenk, Markus R</au><au>Shen, Han-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>10</volume><issue>2</issue><spage>226</spage><epage>242</epage><pages>226-242</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2
−/−
mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2
−/−
MEFs compared with Tsc2
+/+
MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2
−/−
MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2
−/−
MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</abstract><cop>United States</cop><pub>Taylor & Francis</pub><pmid>24296537</pmid><doi>10.4161/auto.27003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1554-8627 |
ispartof | Autophagy, 2014-02, Vol.10 (2), p.226-242 |
issn | 1554-8627 1554-8635 |
language | eng |
recordid | cdi_crossref_primary_10_4161_auto_27003 |
source | PubMed Central Free; MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Acyl Coenzyme A - metabolism AKT Animals Apoptosis - genetics Apoptosis - physiology autophagy Autophagy - genetics Autophagy - physiology Basic Research Paper Cells, Cultured Forkhead Box Protein O1 Forkhead Transcription Factors - genetics Forkhead Transcription Factors - metabolism FOXO1 Lipid Metabolism - genetics Lipid Metabolism - physiology lipid rafts lipogenesis Lipogenesis - genetics Lipogenesis - physiology Mechanistic Target of Rapamycin Complex 1 Mechanistic Target of Rapamycin Complex 2 Mice Multiprotein Complexes - genetics Multiprotein Complexes - metabolism Proto-Oncogene Proteins c-akt - genetics Proto-Oncogene Proteins c-akt - metabolism SCD1 Signal Transduction - genetics Signal Transduction - physiology TOR Serine-Threonine Kinases - genetics TOR Serine-Threonine Kinases - metabolism TSC2 Tumor Suppressor Proteins - genetics Tumor Suppressor Proteins - metabolism |
title | Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20of%20SCD1%20in%20autophagy%20regulation%20via%20lipogenesis%20and%20lipid%20rafts-coupled%20AKT-FOXO1%20signaling%20pathway&rft.jtitle=Autophagy&rft.au=Tan,%20Shi-Hao&rft.date=2014-02-01&rft.volume=10&rft.issue=2&rft.spage=226&rft.epage=242&rft.pages=226-242&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.4161/auto.27003&rft_dat=%3Cproquest_cross%3E1499122277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499122277&rft_id=info:pmid/24296537&rfr_iscdi=true |