Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway

SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important rol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Autophagy 2014-02, Vol.10 (2), p.226-242
Hauptverfasser: Tan, Shi-Hao, Shui, Guanghou, Zhou, Jing, Shi, Yin, Huang, Jingxiang, Xia, Dajing, Wenk, Markus R, Shen, Han-Ming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 242
container_issue 2
container_start_page 226
container_title Autophagy
container_volume 10
creator Tan, Shi-Hao
Shui, Guanghou
Zhou, Jing
Shi, Yin
Huang, Jingxiang
Xia, Dajing
Wenk, Markus R
Shen, Han-Ming
description SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2 −/− mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2 −/− MEFs compared with Tsc2 +/+ MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2 −/− MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2 −/− MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.
doi_str_mv 10.4161/auto.27003
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4161_auto_27003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1499122277</sourcerecordid><originalsourceid>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</originalsourceid><addsrcrecordid>eNptkV1rFDEUhoMotlZv_AGSSxGm5mMy2dwIZWu1WNgLK3gXzuZjNpJNpslMy_57Z926WPAqJ5yH5xzOi9BbSs5b2tGPMI35nElC-DN0SoVom0XHxfNjzeQJelXrrxnoFoq9RCesZaoTXJ6iu2UJYzAQccnR4ezx9-UlxSHhvXXYQL_DxfVThDHkhO8D4BiG3LvkaqgYkt3_g8UF_Fgbk6chOosvvt02V6ufK4pr6BPEkHo8wLh5gN1r9MJDrO7N43uGflx9vl1-bW5WX66XFzeNaRUZm7VqObGESOMdF0IJb52RTBpGhQdnWm4cByUsVVatu851fsGlbDsl5cwZfoY-HbzDtN46a1waC0Q9lLCFstMZgn7aSWGj-3yvBVcdkWoWvH8UlHw3uTrqbajGxQjJ5alq2ipFGWNSzuiHA2pKrrU4fxxDid5npPfX1H8ymuF3_y52RP-GMgPiAITkc9nCQy7R6hF2MRdfIJlQNf-P-DeYyqGk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1499122277</pqid></control><display><type>article</type><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><source>PubMed Central Free</source><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</creator><creatorcontrib>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</creatorcontrib><description>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2 −/− mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2 −/− MEFs compared with Tsc2 +/+ MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2 −/− MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2 −/− MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</description><identifier>ISSN: 1554-8627</identifier><identifier>EISSN: 1554-8635</identifier><identifier>DOI: 10.4161/auto.27003</identifier><identifier>PMID: 24296537</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis</publisher><subject>Acyl Coenzyme A - metabolism ; AKT ; Animals ; Apoptosis - genetics ; Apoptosis - physiology ; autophagy ; Autophagy - genetics ; Autophagy - physiology ; Basic Research Paper ; Cells, Cultured ; Forkhead Box Protein O1 ; Forkhead Transcription Factors - genetics ; Forkhead Transcription Factors - metabolism ; FOXO1 ; Lipid Metabolism - genetics ; Lipid Metabolism - physiology ; lipid rafts ; lipogenesis ; Lipogenesis - genetics ; Lipogenesis - physiology ; Mechanistic Target of Rapamycin Complex 1 ; Mechanistic Target of Rapamycin Complex 2 ; Mice ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Proto-Oncogene Proteins c-akt - genetics ; Proto-Oncogene Proteins c-akt - metabolism ; SCD1 ; Signal Transduction - genetics ; Signal Transduction - physiology ; TOR Serine-Threonine Kinases - genetics ; TOR Serine-Threonine Kinases - metabolism ; TSC2 ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism</subject><ispartof>Autophagy, 2014-02, Vol.10 (2), p.226-242</ispartof><rights>Copyright © 2014 Landes Bioscience 2014</rights><rights>Copyright © 2014 Landes Bioscience 2014 Landes Bioscience</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</citedby><cites>FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396079/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5396079/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24296537$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Tan, Shi-Hao</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Huang, Jingxiang</creatorcontrib><creatorcontrib>Xia, Dajing</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Shen, Han-Ming</creatorcontrib><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><title>Autophagy</title><addtitle>Autophagy</addtitle><description>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2 −/− mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2 −/− MEFs compared with Tsc2 +/+ MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2 −/− MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2 −/− MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</description><subject>Acyl Coenzyme A - metabolism</subject><subject>AKT</subject><subject>Animals</subject><subject>Apoptosis - genetics</subject><subject>Apoptosis - physiology</subject><subject>autophagy</subject><subject>Autophagy - genetics</subject><subject>Autophagy - physiology</subject><subject>Basic Research Paper</subject><subject>Cells, Cultured</subject><subject>Forkhead Box Protein O1</subject><subject>Forkhead Transcription Factors - genetics</subject><subject>Forkhead Transcription Factors - metabolism</subject><subject>FOXO1</subject><subject>Lipid Metabolism - genetics</subject><subject>Lipid Metabolism - physiology</subject><subject>lipid rafts</subject><subject>lipogenesis</subject><subject>Lipogenesis - genetics</subject><subject>Lipogenesis - physiology</subject><subject>Mechanistic Target of Rapamycin Complex 1</subject><subject>Mechanistic Target of Rapamycin Complex 2</subject><subject>Mice</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Proto-Oncogene Proteins c-akt - genetics</subject><subject>Proto-Oncogene Proteins c-akt - metabolism</subject><subject>SCD1</subject><subject>Signal Transduction - genetics</subject><subject>Signal Transduction - physiology</subject><subject>TOR Serine-Threonine Kinases - genetics</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>TSC2</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><issn>1554-8627</issn><issn>1554-8635</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkV1rFDEUhoMotlZv_AGSSxGm5mMy2dwIZWu1WNgLK3gXzuZjNpJNpslMy_57Z926WPAqJ5yH5xzOi9BbSs5b2tGPMI35nElC-DN0SoVom0XHxfNjzeQJelXrrxnoFoq9RCesZaoTXJ6iu2UJYzAQccnR4ezx9-UlxSHhvXXYQL_DxfVThDHkhO8D4BiG3LvkaqgYkt3_g8UF_Fgbk6chOosvvt02V6ufK4pr6BPEkHo8wLh5gN1r9MJDrO7N43uGflx9vl1-bW5WX66XFzeNaRUZm7VqObGESOMdF0IJb52RTBpGhQdnWm4cByUsVVatu851fsGlbDsl5cwZfoY-HbzDtN46a1waC0Q9lLCFstMZgn7aSWGj-3yvBVcdkWoWvH8UlHw3uTrqbajGxQjJ5alq2ipFGWNSzuiHA2pKrrU4fxxDid5npPfX1H8ymuF3_y52RP-GMgPiAITkc9nCQy7R6hF2MRdfIJlQNf-P-DeYyqGk</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Tan, Shi-Hao</creator><creator>Shui, Guanghou</creator><creator>Zhou, Jing</creator><creator>Shi, Yin</creator><creator>Huang, Jingxiang</creator><creator>Xia, Dajing</creator><creator>Wenk, Markus R</creator><creator>Shen, Han-Ming</creator><general>Taylor &amp; Francis</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20140201</creationdate><title>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</title><author>Tan, Shi-Hao ; Shui, Guanghou ; Zhou, Jing ; Shi, Yin ; Huang, Jingxiang ; Xia, Dajing ; Wenk, Markus R ; Shen, Han-Ming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c490t-b9430d007cfe35595fdec727c215faec43ce3a95d19d9b66e6f837746977c72c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Acyl Coenzyme A - metabolism</topic><topic>AKT</topic><topic>Animals</topic><topic>Apoptosis - genetics</topic><topic>Apoptosis - physiology</topic><topic>autophagy</topic><topic>Autophagy - genetics</topic><topic>Autophagy - physiology</topic><topic>Basic Research Paper</topic><topic>Cells, Cultured</topic><topic>Forkhead Box Protein O1</topic><topic>Forkhead Transcription Factors - genetics</topic><topic>Forkhead Transcription Factors - metabolism</topic><topic>FOXO1</topic><topic>Lipid Metabolism - genetics</topic><topic>Lipid Metabolism - physiology</topic><topic>lipid rafts</topic><topic>lipogenesis</topic><topic>Lipogenesis - genetics</topic><topic>Lipogenesis - physiology</topic><topic>Mechanistic Target of Rapamycin Complex 1</topic><topic>Mechanistic Target of Rapamycin Complex 2</topic><topic>Mice</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Proto-Oncogene Proteins c-akt - genetics</topic><topic>Proto-Oncogene Proteins c-akt - metabolism</topic><topic>SCD1</topic><topic>Signal Transduction - genetics</topic><topic>Signal Transduction - physiology</topic><topic>TOR Serine-Threonine Kinases - genetics</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>TSC2</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Shi-Hao</creatorcontrib><creatorcontrib>Shui, Guanghou</creatorcontrib><creatorcontrib>Zhou, Jing</creatorcontrib><creatorcontrib>Shi, Yin</creatorcontrib><creatorcontrib>Huang, Jingxiang</creatorcontrib><creatorcontrib>Xia, Dajing</creatorcontrib><creatorcontrib>Wenk, Markus R</creatorcontrib><creatorcontrib>Shen, Han-Ming</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Autophagy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Shi-Hao</au><au>Shui, Guanghou</au><au>Zhou, Jing</au><au>Shi, Yin</au><au>Huang, Jingxiang</au><au>Xia, Dajing</au><au>Wenk, Markus R</au><au>Shen, Han-Ming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway</atitle><jtitle>Autophagy</jtitle><addtitle>Autophagy</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>10</volume><issue>2</issue><spage>226</spage><epage>242</epage><pages>226-242</pages><issn>1554-8627</issn><eissn>1554-8635</eissn><abstract>SCD1 (stearoyl-coenzyme A desaturase 1) is an endoplasmic reticulum-bound enzyme that catalyzes the formation of the first double bond at the cis-Δ9 position of saturated fatty acids (SFA) to form monounsaturated fatty acids (MUFA). Increasing evidence indicates that autophagy plays an important role in regulating lipid metabolism, while little is known about whether key enzymes of lipogenesis like SCD1 can regulate autophagy. In this study, we examined the role of SCD1 in autophagy using the tsc2 −/− mouse embryonic fibroblasts (MEFs) possessing constitutively active MTORC1 as a cellular model. We found that mRNA and protein levels of SCD1 are significantly elevated in the tsc2 −/− MEFs compared with Tsc2 +/+ MEFs, resulting in significant increases in levels of various lipid classes. Furthermore, inhibition of SCD1 activity by either a chemical inhibitor or genetic knockdown resulted in an increase of autophagic flux only in the tsc2 −/− MEFs. Induction of autophagy was independent of MTOR as MTORC1 activity was not suppressed by SCD1 inhibition. Loss of phosphorylation on AKT Ser473 was observed upon SCD1 inhibition and such AKT inactivation was due to disruption of lipid raft formation, without affecting the formation and activity of MTORC2. Increased nuclear translocation of FOXO1 was observed following AKT inactivation, leading to increased transcription of genes involved in the autophagic process. The tsc2 −/− MEFs were also more susceptible to apoptosis induced by SCD1 inhibition and blockage of autophagy sensitized the cell death response. These results revealed a novel function of SCD1 on regulation of autophagy via lipogenesis and the lipid rafts-AKT-FOXO1 pathway.</abstract><cop>United States</cop><pub>Taylor &amp; Francis</pub><pmid>24296537</pmid><doi>10.4161/auto.27003</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1554-8627
ispartof Autophagy, 2014-02, Vol.10 (2), p.226-242
issn 1554-8627
1554-8635
language eng
recordid cdi_crossref_primary_10_4161_auto_27003
source PubMed Central Free; MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Acyl Coenzyme A - metabolism
AKT
Animals
Apoptosis - genetics
Apoptosis - physiology
autophagy
Autophagy - genetics
Autophagy - physiology
Basic Research Paper
Cells, Cultured
Forkhead Box Protein O1
Forkhead Transcription Factors - genetics
Forkhead Transcription Factors - metabolism
FOXO1
Lipid Metabolism - genetics
Lipid Metabolism - physiology
lipid rafts
lipogenesis
Lipogenesis - genetics
Lipogenesis - physiology
Mechanistic Target of Rapamycin Complex 1
Mechanistic Target of Rapamycin Complex 2
Mice
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Proto-Oncogene Proteins c-akt - genetics
Proto-Oncogene Proteins c-akt - metabolism
SCD1
Signal Transduction - genetics
Signal Transduction - physiology
TOR Serine-Threonine Kinases - genetics
TOR Serine-Threonine Kinases - metabolism
TSC2
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
title Critical role of SCD1 in autophagy regulation via lipogenesis and lipid rafts-coupled AKT-FOXO1 signaling pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T08%3A57%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Critical%20role%20of%20SCD1%20in%20autophagy%20regulation%20via%20lipogenesis%20and%20lipid%20rafts-coupled%20AKT-FOXO1%20signaling%20pathway&rft.jtitle=Autophagy&rft.au=Tan,%20Shi-Hao&rft.date=2014-02-01&rft.volume=10&rft.issue=2&rft.spage=226&rft.epage=242&rft.pages=226-242&rft.issn=1554-8627&rft.eissn=1554-8635&rft_id=info:doi/10.4161/auto.27003&rft_dat=%3Cproquest_cross%3E1499122277%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1499122277&rft_id=info:pmid/24296537&rfr_iscdi=true