Distributive and Anti-distributive Mendelsohn Triple Systems
We prove that the existence spectrum of Mendelsohn triple systems whose associated quasigroups satisfy distributivity corresponds to the Loeschian numbers, and provide some enumeration results. We do this by considering a description of the quasigroups in terms of commutative Moufang loops. In addit...
Gespeichert in:
Veröffentlicht in: | Canadian mathematical bulletin 2016-03, Vol.59 (1), p.36-49 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove that the existence spectrum of Mendelsohn triple systems whose associated quasigroups satisfy distributivity corresponds to the Loeschian numbers, and provide some enumeration results. We do this by considering a description of the quasigroups in terms of commutative Moufang loops. In addition we provide constructions of Mendelsohn quasigroups that fail distributivity for asmany combinations of elements as possible. These systems are analogues of Hall triple systems and anti-mitre Steiner triple systems respectively. |
---|---|
ISSN: | 0008-4395 1496-4287 |
DOI: | 10.4153/CMB-2015-053-2 |