Stable ASH Algebras

The Jiang–Su algebra $Z$ has come to prominence in the classification program for nuclear ${{C}^{*}}$ -algebras of late, due primarily to the fact that Elliott’s classification conjecture in its strongest form predicts that all simple, separable, and nuclear ${{C}^{*}}$ -algebras with unperforated $...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2008-06, Vol.60 (3), p.703-720
Hauptverfasser: Toms, Andrew S., Winter, Wilhelm
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Jiang–Su algebra $Z$ has come to prominence in the classification program for nuclear ${{C}^{*}}$ -algebras of late, due primarily to the fact that Elliott’s classification conjecture in its strongest form predicts that all simple, separable, and nuclear ${{C}^{*}}$ -algebras with unperforated $\text{K}$ -theory will absorb $Z$ tensorially, i.e., will be $Z$ -stable. There exist counterexamples which suggest that the conjecture will only hold for simple, nuclear, separable and $Z$ -stable ${{C}^{*}}$ -algebras. We prove that virtually all classes of nuclear ${{C}^{*}}$ -algebras for which the Elliott conjecture has been confirmed so far consist of $Z$ -stable ${{C}^{*}}$ -algebras. This follows in large part from the following result, also proved herein: separable and approximately divisible ${{C}^{*}}$ -algebras are $Z$ -stable.
ISSN:0008-414X
1496-4279
DOI:10.4153/CJM-2008-031-6