Universal zero solutions of linear partial differential operators

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Studia mathematica 2010, Vol.198 (1), p.33-51
Hauptverfasser: Kalmes, Thomas, Niess, Markus
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 1
container_start_page 33
container_title Studia mathematica
container_volume 198
creator Kalmes, Thomas
Niess, Markus
description
doi_str_mv 10.4064/sm198-1-2
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_4064_sm198_1_2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4064_sm198_1_2</sourcerecordid><originalsourceid>FETCH-LOGICAL-c264t-d655c7d0171018fd5e42e116067eca6a28e57b49431249b5f0a73db634a97ce03</originalsourceid><addsrcrecordid>eNotj0tLxDAURoM4YB1n4T_o1kX03jzb5TD4ggE3zjqk7Q1EOk1JqqC_Xh1dHT44fHAYu0a4VWDUXTli23Dk4oxVaCVwI6U9ZxWAbLkUQl6wy1LeAIRuBFZse5jiB-Xix_qLcqpLGt-XmKZSp1CPcSKf69nnJf4IQwyBMk2nkWbKfkm5XLFV8GOhzT_X7PBw_7p74vuXx-fdds97YdTCB6N1bwdAi4BNGDQpQYgGjKXeGy8a0rZTrZIoVNvpAN7KoTNS-db2BHLNbv5--5xKyRTcnOPR50-H4H7b3andoRPyGz__TLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Universal zero solutions of linear partial differential operators</title><source>Institute of Mathematics (Polish Academy of Sciences) Publications</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kalmes, Thomas ; Niess, Markus</creator><creatorcontrib>Kalmes, Thomas ; Niess, Markus</creatorcontrib><identifier>ISSN: 0039-3223</identifier><identifier>EISSN: 1730-6337</identifier><identifier>DOI: 10.4064/sm198-1-2</identifier><language>eng</language><ispartof>Studia mathematica, 2010, Vol.198 (1), p.33-51</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c264t-d655c7d0171018fd5e42e116067eca6a28e57b49431249b5f0a73db634a97ce03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,4033,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Kalmes, Thomas</creatorcontrib><creatorcontrib>Niess, Markus</creatorcontrib><title>Universal zero solutions of linear partial differential operators</title><title>Studia mathematica</title><issn>0039-3223</issn><issn>1730-6337</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNotj0tLxDAURoM4YB1n4T_o1kX03jzb5TD4ggE3zjqk7Q1EOk1JqqC_Xh1dHT44fHAYu0a4VWDUXTli23Dk4oxVaCVwI6U9ZxWAbLkUQl6wy1LeAIRuBFZse5jiB-Xix_qLcqpLGt-XmKZSp1CPcSKf69nnJf4IQwyBMk2nkWbKfkm5XLFV8GOhzT_X7PBw_7p74vuXx-fdds97YdTCB6N1bwdAi4BNGDQpQYgGjKXeGy8a0rZTrZIoVNvpAN7KoTNS-db2BHLNbv5--5xKyRTcnOPR50-H4H7b3andoRPyGz__TLI</recordid><startdate>2010</startdate><enddate>2010</enddate><creator>Kalmes, Thomas</creator><creator>Niess, Markus</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2010</creationdate><title>Universal zero solutions of linear partial differential operators</title><author>Kalmes, Thomas ; Niess, Markus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c264t-d655c7d0171018fd5e42e116067eca6a28e57b49431249b5f0a73db634a97ce03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalmes, Thomas</creatorcontrib><creatorcontrib>Niess, Markus</creatorcontrib><collection>CrossRef</collection><jtitle>Studia mathematica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalmes, Thomas</au><au>Niess, Markus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Universal zero solutions of linear partial differential operators</atitle><jtitle>Studia mathematica</jtitle><date>2010</date><risdate>2010</risdate><volume>198</volume><issue>1</issue><spage>33</spage><epage>51</epage><pages>33-51</pages><issn>0039-3223</issn><eissn>1730-6337</eissn><doi>10.4064/sm198-1-2</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0039-3223
ispartof Studia mathematica, 2010, Vol.198 (1), p.33-51
issn 0039-3223
1730-6337
language eng
recordid cdi_crossref_primary_10_4064_sm198_1_2
source Institute of Mathematics (Polish Academy of Sciences) Publications; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title Universal zero solutions of linear partial differential operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T06%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Universal%20zero%20solutions%20of%20linear%20partial%20differential%20operators&rft.jtitle=Studia%20mathematica&rft.au=Kalmes,%20Thomas&rft.date=2010&rft.volume=198&rft.issue=1&rft.spage=33&rft.epage=51&rft.pages=33-51&rft.issn=0039-3223&rft.eissn=1730-6337&rft_id=info:doi/10.4064/sm198-1-2&rft_dat=%3Ccrossref%3E10_4064_sm198_1_2%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true