Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test

The article is devoted to studying the rheological properties of metals and alloys in a cold state based on the results of tensile tests of cylindrical specimens. The aim of this study is to apply the method for optical measuring the neck profile for determining the hardening curve and to evaluate t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Key engineering materials 2022-02, Vol.910, p.1032-1039
Hauptverfasser: Khotinov, Vladislav, Erpalov, Mikhail
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1039
container_issue
container_start_page 1032
container_title Key engineering materials
container_volume 910
creator Khotinov, Vladislav
Erpalov, Mikhail
description The article is devoted to studying the rheological properties of metals and alloys in a cold state based on the results of tensile tests of cylindrical specimens. The aim of this study is to apply the method for optical measuring the neck profile for determining the hardening curve and to evaluate the accuracy of the data obtained using reverse simulation of the test process. For the study, the specimen of aluminum was used, which is characterized by increased plasticity and a continuous stage of deformation concentrated in the neck. The experimental data were processed using the Bridgman, Davidenkov-Spiridonova, and Ostsemin models. The results of the reverse simulation that performed using the hardening curve based on the Ostsemin model have the greatest convergence with the laboratory experiment in terms of tensile force and convergence at the level of other models in terms of neck shape change.
doi_str_mv 10.4028/p-45r2jh
format Article
fullrecord <record><control><sourceid>transtech_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4028_p_45r2jh</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_4028_p_45r2jh</sourcerecordid><originalsourceid>FETCH-LOGICAL-c68h-fcc6722abef45245a1f89a1732b322a16acc142da79282514f82c154f6ddac93</originalsourceid><addsrcrecordid>eNplkFFLwzAUhYMoOKfgT8ijCNUmTdL2cUznhOlE916y9MZ2tk1JUsG_4S823fTJp3s55-Pcy0HoksQ3LKbZbR8xbumuOkITIgSN8jTnx2GPSRLlGRWn6My5XRwnJCN8gr5nfd_USvradNho7CvAT-ArU2JtLF73PphNkKQbbN2974FnUB_4xRpdN4C9wXfgwbZ1B3t3KW0J3cjOB_sJY-qsGYI9tFhb0-6hV3BD493fyQ10bgzbgPPn6ETLxsHF75yit8X9Zr6MVuuHx_lsFSmRVZFWSqSUyi1oxinjkugslyRN6DYJMhFSKcJoKdOcZpQTpjOqCGdalKVUeTJFV4dUZY1zFnTR27qV9qsgcTE2WfTFocmAXh9Qb2XnPKiq2JnBduG5__APH-F3tQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test</title><source>Scientific.net Journals</source><creator>Khotinov, Vladislav ; Erpalov, Mikhail</creator><creatorcontrib>Khotinov, Vladislav ; Erpalov, Mikhail</creatorcontrib><description>The article is devoted to studying the rheological properties of metals and alloys in a cold state based on the results of tensile tests of cylindrical specimens. The aim of this study is to apply the method for optical measuring the neck profile for determining the hardening curve and to evaluate the accuracy of the data obtained using reverse simulation of the test process. For the study, the specimen of aluminum was used, which is characterized by increased plasticity and a continuous stage of deformation concentrated in the neck. The experimental data were processed using the Bridgman, Davidenkov-Spiridonova, and Ostsemin models. The results of the reverse simulation that performed using the hardening curve based on the Ostsemin model have the greatest convergence with the laboratory experiment in terms of tensile force and convergence at the level of other models in terms of neck shape change.</description><identifier>ISSN: 1013-9826</identifier><identifier>ISSN: 1662-9795</identifier><identifier>EISSN: 1662-9795</identifier><identifier>DOI: 10.4028/p-45r2jh</identifier><language>eng</language><publisher>Trans Tech Publications Ltd</publisher><ispartof>Key engineering materials, 2022-02, Vol.910, p.1032-1039</ispartof><rights>2022 Trans Tech Publications Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c68h-fcc6722abef45245a1f89a1732b322a16acc142da79282514f82c154f6ddac93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttps://www.scientific.net/Image/TitleCover/6322?width=600</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Khotinov, Vladislav</creatorcontrib><creatorcontrib>Erpalov, Mikhail</creatorcontrib><title>Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test</title><title>Key engineering materials</title><description>The article is devoted to studying the rheological properties of metals and alloys in a cold state based on the results of tensile tests of cylindrical specimens. The aim of this study is to apply the method for optical measuring the neck profile for determining the hardening curve and to evaluate the accuracy of the data obtained using reverse simulation of the test process. For the study, the specimen of aluminum was used, which is characterized by increased plasticity and a continuous stage of deformation concentrated in the neck. The experimental data were processed using the Bridgman, Davidenkov-Spiridonova, and Ostsemin models. The results of the reverse simulation that performed using the hardening curve based on the Ostsemin model have the greatest convergence with the laboratory experiment in terms of tensile force and convergence at the level of other models in terms of neck shape change.</description><issn>1013-9826</issn><issn>1662-9795</issn><issn>1662-9795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNplkFFLwzAUhYMoOKfgT8ijCNUmTdL2cUznhOlE916y9MZ2tk1JUsG_4S823fTJp3s55-Pcy0HoksQ3LKbZbR8xbumuOkITIgSN8jTnx2GPSRLlGRWn6My5XRwnJCN8gr5nfd_USvradNho7CvAT-ArU2JtLF73PphNkKQbbN2974FnUB_4xRpdN4C9wXfgwbZ1B3t3KW0J3cjOB_sJY-qsGYI9tFhb0-6hV3BD493fyQ10bgzbgPPn6ETLxsHF75yit8X9Zr6MVuuHx_lsFSmRVZFWSqSUyi1oxinjkugslyRN6DYJMhFSKcJoKdOcZpQTpjOqCGdalKVUeTJFV4dUZY1zFnTR27qV9qsgcTE2WfTFocmAXh9Qb2XnPKiq2JnBduG5__APH-F3tQ</recordid><startdate>20220215</startdate><enddate>20220215</enddate><creator>Khotinov, Vladislav</creator><creator>Erpalov, Mikhail</creator><general>Trans Tech Publications Ltd</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20220215</creationdate><title>Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test</title><author>Khotinov, Vladislav ; Erpalov, Mikhail</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c68h-fcc6722abef45245a1f89a1732b322a16acc142da79282514f82c154f6ddac93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khotinov, Vladislav</creatorcontrib><creatorcontrib>Erpalov, Mikhail</creatorcontrib><collection>CrossRef</collection><jtitle>Key engineering materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khotinov, Vladislav</au><au>Erpalov, Mikhail</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test</atitle><jtitle>Key engineering materials</jtitle><date>2022-02-15</date><risdate>2022</risdate><volume>910</volume><spage>1032</spage><epage>1039</epage><pages>1032-1039</pages><issn>1013-9826</issn><issn>1662-9795</issn><eissn>1662-9795</eissn><abstract>The article is devoted to studying the rheological properties of metals and alloys in a cold state based on the results of tensile tests of cylindrical specimens. The aim of this study is to apply the method for optical measuring the neck profile for determining the hardening curve and to evaluate the accuracy of the data obtained using reverse simulation of the test process. For the study, the specimen of aluminum was used, which is characterized by increased plasticity and a continuous stage of deformation concentrated in the neck. The experimental data were processed using the Bridgman, Davidenkov-Spiridonova, and Ostsemin models. The results of the reverse simulation that performed using the hardening curve based on the Ostsemin model have the greatest convergence with the laboratory experiment in terms of tensile force and convergence at the level of other models in terms of neck shape change.</abstract><pub>Trans Tech Publications Ltd</pub><doi>10.4028/p-45r2jh</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1013-9826
ispartof Key engineering materials, 2022-02, Vol.910, p.1032-1039
issn 1013-9826
1662-9795
1662-9795
language eng
recordid cdi_crossref_primary_10_4028_p_45r2jh
source Scientific.net Journals
title Application of the Method for Optical Measuring the Neck Profile to Determine the Hardening Curve of Aluminum from the Results of the Tensile Test
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A26%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-transtech_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20the%20Method%20for%20Optical%20Measuring%20the%20Neck%20Profile%20to%20Determine%20the%20Hardening%20Curve%20of%20Aluminum%20from%20the%20Results%20of%20the%20Tensile%20Test&rft.jtitle=Key%20engineering%20materials&rft.au=Khotinov,%20Vladislav&rft.date=2022-02-15&rft.volume=910&rft.spage=1032&rft.epage=1039&rft.pages=1032-1039&rft.issn=1013-9826&rft.eissn=1662-9795&rft_id=info:doi/10.4028/p-45r2jh&rft_dat=%3Ctranstech_cross%3E10_4028_p_45r2jh%3C/transtech_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true