How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM)
In the growth process of movie IWOM, the antecedent IWOM has a significant influence on the subsequent IWOM. IWOM does not form all at once, but iteratively over a short period. This article explores the influence of IWOM publishers on IWOM growth and the dynamic impact of IWOM on movie box office b...
Gespeichert in:
Veröffentlicht in: | Journal of organizational and end user computing 2023-07, Vol.35 (3), p.1-25 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 25 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Journal of organizational and end user computing |
container_volume | 35 |
creator | Liao, Junfeng Li, Rundong Liao, Yongyu Guo, Xu |
description | In the growth process of movie IWOM, the antecedent IWOM has a significant influence on the subsequent IWOM. IWOM does not form all at once, but iteratively over a short period. This article explores the influence of IWOM publishers on IWOM growth and the dynamic impact of IWOM on movie box office by using vector autoregressive model (VAR model) and impulse response analysis. The findings reveal that highly influential and active users' statements stimulate discussion enthusiasm and increase related topic discussions. These statements also reduce the discreteness of IWOM. On the other hand, highly professional users make IWOM more discreet. Both increased discussion enthusiasm and differentiated IWOM contribute to the growth of movie box office. Additionally, during the growth of IWOM, there is an approximately five day “advance period of word-of-mouth regeneration”: it takes audiences about three days from reading movie reviews to watching a movie, followed by about two days to write their own reviews, and the whole process takes about five days. |
doi_str_mv | 10.4018/JOEUC.327357 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_JOEUC_327357</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2846887521</sourcerecordid><originalsourceid>FETCH-LOGICAL-c278t-8477d2b2e856e270fefa61e6038248ef825db11f32b65f71faa7204cb187bc283</originalsourceid><addsrcrecordid>eNptkEFLwzAUx4soOKc3P0DAi4KdyWvTBC8yZt0qGzvo2DGmbTI7ajPT1LFvb7cOvHh6j_f_8X_w87xrggchJvzhdR4vRoMAWEDZidcjNIx8igmcHneAIDz3Lup6jTFQjmnP-5iYLZqaaoWWRVmixKFnVcrd0yMaVij-2hS2yGSJ3lyT75CpWkBZ6YofhcbWbN0nMholVXuslENLY3PfaH9mmja5TZbz2d2ld6ZlWaur4-x7i5f4fTTxp_NxMhpO_QwYdz4PGcshBcVppIBhrbSMiIpwwCHkSnOgeUqIDiCNqGZES8kAh1lKOEsz4EHfu-l6N9Z8N6p2Ym0aW7UvBfAw4pxRIC1131GZNXVtlRYbW3xJuxMEi71DcXAoOoctPuzwYlX89e11ib0ukThx0CWGlYj_baDBL96Td14</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2846887521</pqid></control><display><type>article</type><title>How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM)</title><source>Alma/SFX Local Collection</source><creator>Liao, Junfeng ; Li, Rundong ; Liao, Yongyu ; Guo, Xu</creator><creatorcontrib>Liao, Junfeng ; Li, Rundong ; Liao, Yongyu ; Guo, Xu</creatorcontrib><description>In the growth process of movie IWOM, the antecedent IWOM has a significant influence on the subsequent IWOM. IWOM does not form all at once, but iteratively over a short period. This article explores the influence of IWOM publishers on IWOM growth and the dynamic impact of IWOM on movie box office by using vector autoregressive model (VAR model) and impulse response analysis. The findings reveal that highly influential and active users' statements stimulate discussion enthusiasm and increase related topic discussions. These statements also reduce the discreteness of IWOM. On the other hand, highly professional users make IWOM more discreet. Both increased discussion enthusiasm and differentiated IWOM contribute to the growth of movie box office. Additionally, during the growth of IWOM, there is an approximately five day “advance period of word-of-mouth regeneration”: it takes audiences about three days from reading movie reviews to watching a movie, followed by about two days to write their own reviews, and the whole process takes about five days.</description><identifier>ISSN: 1546-2234</identifier><identifier>EISSN: 1546-5012</identifier><identifier>DOI: 10.4018/JOEUC.327357</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Autoregressive models ; Empirical analysis ; Impulse response ; Internet ; Iterative methods ; Motion pictures ; Word of mouth advertising</subject><ispartof>Journal of organizational and end user computing, 2023-07, Vol.35 (3), p.1-25</ispartof><rights>2023. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c278t-8477d2b2e856e270fefa61e6038248ef825db11f32b65f71faa7204cb187bc283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liao, Junfeng</creatorcontrib><creatorcontrib>Li, Rundong</creatorcontrib><creatorcontrib>Liao, Yongyu</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><title>How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM)</title><title>Journal of organizational and end user computing</title><description>In the growth process of movie IWOM, the antecedent IWOM has a significant influence on the subsequent IWOM. IWOM does not form all at once, but iteratively over a short period. This article explores the influence of IWOM publishers on IWOM growth and the dynamic impact of IWOM on movie box office by using vector autoregressive model (VAR model) and impulse response analysis. The findings reveal that highly influential and active users' statements stimulate discussion enthusiasm and increase related topic discussions. These statements also reduce the discreteness of IWOM. On the other hand, highly professional users make IWOM more discreet. Both increased discussion enthusiasm and differentiated IWOM contribute to the growth of movie box office. Additionally, during the growth of IWOM, there is an approximately five day “advance period of word-of-mouth regeneration”: it takes audiences about three days from reading movie reviews to watching a movie, followed by about two days to write their own reviews, and the whole process takes about five days.</description><subject>Autoregressive models</subject><subject>Empirical analysis</subject><subject>Impulse response</subject><subject>Internet</subject><subject>Iterative methods</subject><subject>Motion pictures</subject><subject>Word of mouth advertising</subject><issn>1546-2234</issn><issn>1546-5012</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkEFLwzAUx4soOKc3P0DAi4KdyWvTBC8yZt0qGzvo2DGmbTI7ajPT1LFvb7cOvHh6j_f_8X_w87xrggchJvzhdR4vRoMAWEDZidcjNIx8igmcHneAIDz3Lup6jTFQjmnP-5iYLZqaaoWWRVmixKFnVcrd0yMaVij-2hS2yGSJ3lyT75CpWkBZ6YofhcbWbN0nMholVXuslENLY3PfaH9mmja5TZbz2d2ld6ZlWaur4-x7i5f4fTTxp_NxMhpO_QwYdz4PGcshBcVppIBhrbSMiIpwwCHkSnOgeUqIDiCNqGZES8kAh1lKOEsz4EHfu-l6N9Z8N6p2Ym0aW7UvBfAw4pxRIC1131GZNXVtlRYbW3xJuxMEi71DcXAoOoctPuzwYlX89e11ib0ukThx0CWGlYj_baDBL96Td14</recordid><startdate>20230731</startdate><enddate>20230731</enddate><creator>Liao, Junfeng</creator><creator>Li, Rundong</creator><creator>Liao, Yongyu</creator><creator>Guo, Xu</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ALSLI</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>CNYFK</scope><scope>DWQXO</scope><scope>E3H</scope><scope>F2A</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M1O</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20230731</creationdate><title>How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM)</title><author>Liao, Junfeng ; Li, Rundong ; Liao, Yongyu ; Guo, Xu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c278t-8477d2b2e856e270fefa61e6038248ef825db11f32b65f71faa7204cb187bc283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Autoregressive models</topic><topic>Empirical analysis</topic><topic>Impulse response</topic><topic>Internet</topic><topic>Iterative methods</topic><topic>Motion pictures</topic><topic>Word of mouth advertising</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liao, Junfeng</creatorcontrib><creatorcontrib>Li, Rundong</creatorcontrib><creatorcontrib>Liao, Yongyu</creatorcontrib><creatorcontrib>Guo, Xu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Social Science Premium Collection</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>Library & Information Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Library Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of organizational and end user computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liao, Junfeng</au><au>Li, Rundong</au><au>Liao, Yongyu</au><au>Guo, Xu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM)</atitle><jtitle>Journal of organizational and end user computing</jtitle><date>2023-07-31</date><risdate>2023</risdate><volume>35</volume><issue>3</issue><spage>1</spage><epage>25</epage><pages>1-25</pages><issn>1546-2234</issn><eissn>1546-5012</eissn><abstract>In the growth process of movie IWOM, the antecedent IWOM has a significant influence on the subsequent IWOM. IWOM does not form all at once, but iteratively over a short period. This article explores the influence of IWOM publishers on IWOM growth and the dynamic impact of IWOM on movie box office by using vector autoregressive model (VAR model) and impulse response analysis. The findings reveal that highly influential and active users' statements stimulate discussion enthusiasm and increase related topic discussions. These statements also reduce the discreteness of IWOM. On the other hand, highly professional users make IWOM more discreet. Both increased discussion enthusiasm and differentiated IWOM contribute to the growth of movie box office. Additionally, during the growth of IWOM, there is an approximately five day “advance period of word-of-mouth regeneration”: it takes audiences about three days from reading movie reviews to watching a movie, followed by about two days to write their own reviews, and the whole process takes about five days.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/JOEUC.327357</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1546-2234 |
ispartof | Journal of organizational and end user computing, 2023-07, Vol.35 (3), p.1-25 |
issn | 1546-2234 1546-5012 |
language | eng |
recordid | cdi_crossref_primary_10_4018_JOEUC_327357 |
source | Alma/SFX Local Collection |
subjects | Autoregressive models Empirical analysis Impulse response Internet Iterative methods Motion pictures Word of mouth advertising |
title | How Long Will It Delay?: An Empirical Study on Iterative Growth of Internet Word-of-Mouth (IWOM) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T00%3A36%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20Long%20Will%20It%20Delay?:%20An%20Empirical%20Study%20on%20Iterative%20Growth%20of%20Internet%20Word-of-Mouth%20(IWOM)&rft.jtitle=Journal%20of%20organizational%20and%20end%20user%20computing&rft.au=Liao,%20Junfeng&rft.date=2023-07-31&rft.volume=35&rft.issue=3&rft.spage=1&rft.epage=25&rft.pages=1-25&rft.issn=1546-2234&rft.eissn=1546-5012&rft_id=info:doi/10.4018/JOEUC.327357&rft_dat=%3Cproquest_cross%3E2846887521%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2846887521&rft_id=info:pmid/&rfr_iscdi=true |