A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information
Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, lead...
Gespeichert in:
Veröffentlicht in: | International journal on semantic web and information systems 2024-01, Vol.20 (1), p.1-22 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 22 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | International journal on semantic web and information systems |
container_volume | 20 |
creator | Jin, Zechen Liu, Jun Zheng, Yida Yu, Yang |
description | Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation. |
doi_str_mv | 10.4018/IJSWIS.338999 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSWIS_338999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954740005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EEqUwsltiTvEjduyxLY8GKiHRoo6WY2yaiibFdob-97iEx8Lis3Tf_e70AXCJ0ShHWFyXD4tVuRhRKqSUR2CAGSMZJxIf__4FPQVnIWwQooxSPABqDBd2q5tYG7iyVTbRwb7C8W7nW23W0LUeTnSES6831sTW7-GzNW0Tou9MrNsGruq4hrMuRcBHu9-1dRNh2aS5rT70z8GJ0-_BXnzXIXi5u11OZ9n86b6cjueZoQTHzHAhOePIFjkjlawcx4XkTgpe4YJyTjUWjGmXW2EqYXV6SV5RJ1juJGGcDsFVn5sO_-hsiGrTdr5JKxWRLC9yhBBLVNZTxrcheOvUztdb7fcKI3VwqHqHqneY-Juer9_qv8Bel0q61Jcu9aPr3xCC6Cc19Xs7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954740005</pqid></control><display><type>article</type><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</creator><creatorcontrib>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</creatorcontrib><description>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</description><identifier>ISSN: 1552-6283</identifier><identifier>EISSN: 1552-6291</identifier><identifier>DOI: 10.4018/IJSWIS.338999</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Interpolation ; Object recognition ; Performance evaluation ; Performance measurement ; Prediction models ; Semantic web ; Statistical analysis ; Table tennis ; Tennis ; Trajectories</subject><ispartof>International journal on semantic web and information systems, 2024-01, Vol.20 (1), p.1-22</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</cites><orcidid>0009-0009-2592-2726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2954740005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Jin, Zechen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zheng, Yida</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><title>International journal on semantic web and information systems</title><description>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</description><subject>Algorithms</subject><subject>Interpolation</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Prediction models</subject><subject>Semantic web</subject><subject>Statistical analysis</subject><subject>Table tennis</subject><subject>Tennis</subject><subject>Trajectories</subject><issn>1552-6283</issn><issn>1552-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkLtPwzAQhy0EEqUwsltiTvEjduyxLY8GKiHRoo6WY2yaiibFdob-97iEx8Lis3Tf_e70AXCJ0ShHWFyXD4tVuRhRKqSUR2CAGSMZJxIf__4FPQVnIWwQooxSPABqDBd2q5tYG7iyVTbRwb7C8W7nW23W0LUeTnSES6831sTW7-GzNW0Tou9MrNsGruq4hrMuRcBHu9-1dRNh2aS5rT70z8GJ0-_BXnzXIXi5u11OZ9n86b6cjueZoQTHzHAhOePIFjkjlawcx4XkTgpe4YJyTjUWjGmXW2EqYXV6SV5RJ1juJGGcDsFVn5sO_-hsiGrTdr5JKxWRLC9yhBBLVNZTxrcheOvUztdb7fcKI3VwqHqHqneY-Juer9_qv8Bel0q61Jcu9aPr3xCC6Cc19Xs7</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Jin, Zechen</creator><creator>Liu, Jun</creator><creator>Zheng, Yida</creator><creator>Yu, Yang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0009-0009-2592-2726</orcidid></search><sort><creationdate>20240101</creationdate><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><author>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Interpolation</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Prediction models</topic><topic>Semantic web</topic><topic>Statistical analysis</topic><topic>Table tennis</topic><topic>Tennis</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Zechen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zheng, Yida</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal on semantic web and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Zechen</au><au>Liu, Jun</au><au>Zheng, Yida</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</atitle><jtitle>International journal on semantic web and information systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1552-6283</issn><eissn>1552-6291</eissn><abstract>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJSWIS.338999</doi><tpages>22</tpages><orcidid>https://orcid.org/0009-0009-2592-2726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-6283 |
ispartof | International journal on semantic web and information systems, 2024-01, Vol.20 (1), p.1-22 |
issn | 1552-6283 1552-6291 |
language | eng |
recordid | cdi_crossref_primary_10_4018_IJSWIS_338999 |
source | ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Interpolation Object recognition Performance evaluation Performance measurement Prediction models Semantic web Statistical analysis Table tennis Tennis Trajectories |
title | A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semantic%20Web-Based%20Approach%20for%20Bat%20Trajectory%20Reconstruction%20With%20Human%20Keypoint%20Information&rft.jtitle=International%20journal%20on%20semantic%20web%20and%20information%20systems&rft.au=Jin,%20Zechen&rft.date=2024-01-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1552-6283&rft.eissn=1552-6291&rft_id=info:doi/10.4018/IJSWIS.338999&rft_dat=%3Cproquest_cross%3E2954740005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954740005&rft_id=info:pmid/&rfr_iscdi=true |