A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information

Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, lead...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal on semantic web and information systems 2024-01, Vol.20 (1), p.1-22
Hauptverfasser: Jin, Zechen, Liu, Jun, Zheng, Yida, Yu, Yang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22
container_issue 1
container_start_page 1
container_title International journal on semantic web and information systems
container_volume 20
creator Jin, Zechen
Liu, Jun
Zheng, Yida
Yu, Yang
description Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.
doi_str_mv 10.4018/IJSWIS.338999
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSWIS_338999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2954740005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</originalsourceid><addsrcrecordid>eNptkLtPwzAQhy0EEqUwsltiTvEjduyxLY8GKiHRoo6WY2yaiibFdob-97iEx8Lis3Tf_e70AXCJ0ShHWFyXD4tVuRhRKqSUR2CAGSMZJxIf__4FPQVnIWwQooxSPABqDBd2q5tYG7iyVTbRwb7C8W7nW23W0LUeTnSES6831sTW7-GzNW0Tou9MrNsGruq4hrMuRcBHu9-1dRNh2aS5rT70z8GJ0-_BXnzXIXi5u11OZ9n86b6cjueZoQTHzHAhOePIFjkjlawcx4XkTgpe4YJyTjUWjGmXW2EqYXV6SV5RJ1juJGGcDsFVn5sO_-hsiGrTdr5JKxWRLC9yhBBLVNZTxrcheOvUztdb7fcKI3VwqHqHqneY-Juer9_qv8Bel0q61Jcu9aPr3xCC6Cc19Xs7</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2954740005</pqid></control><display><type>article</type><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</creator><creatorcontrib>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</creatorcontrib><description>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</description><identifier>ISSN: 1552-6283</identifier><identifier>EISSN: 1552-6291</identifier><identifier>DOI: 10.4018/IJSWIS.338999</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Interpolation ; Object recognition ; Performance evaluation ; Performance measurement ; Prediction models ; Semantic web ; Statistical analysis ; Table tennis ; Tennis ; Trajectories</subject><ispartof>International journal on semantic web and information systems, 2024-01, Vol.20 (1), p.1-22</ispartof><rights>2024. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</cites><orcidid>0009-0009-2592-2726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2954740005?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,21388,27924,27925,33744,43805,64385,64389,72469</link.rule.ids></links><search><creatorcontrib>Jin, Zechen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zheng, Yida</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><title>International journal on semantic web and information systems</title><description>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</description><subject>Algorithms</subject><subject>Interpolation</subject><subject>Object recognition</subject><subject>Performance evaluation</subject><subject>Performance measurement</subject><subject>Prediction models</subject><subject>Semantic web</subject><subject>Statistical analysis</subject><subject>Table tennis</subject><subject>Tennis</subject><subject>Trajectories</subject><issn>1552-6283</issn><issn>1552-6291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptkLtPwzAQhy0EEqUwsltiTvEjduyxLY8GKiHRoo6WY2yaiibFdob-97iEx8Lis3Tf_e70AXCJ0ShHWFyXD4tVuRhRKqSUR2CAGSMZJxIf__4FPQVnIWwQooxSPABqDBd2q5tYG7iyVTbRwb7C8W7nW23W0LUeTnSES6831sTW7-GzNW0Tou9MrNsGruq4hrMuRcBHu9-1dRNh2aS5rT70z8GJ0-_BXnzXIXi5u11OZ9n86b6cjueZoQTHzHAhOePIFjkjlawcx4XkTgpe4YJyTjUWjGmXW2EqYXV6SV5RJ1juJGGcDsFVn5sO_-hsiGrTdr5JKxWRLC9yhBBLVNZTxrcheOvUztdb7fcKI3VwqHqHqneY-Juer9_qv8Bel0q61Jcu9aPr3xCC6Cc19Xs7</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Jin, Zechen</creator><creator>Liu, Jun</creator><creator>Zheng, Yida</creator><creator>Yu, Yang</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0009-0009-2592-2726</orcidid></search><sort><creationdate>20240101</creationdate><title>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</title><author>Jin, Zechen ; Liu, Jun ; Zheng, Yida ; Yu, Yang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-c6896560e7452b9bf61796f986b173663a1855af4e8cb8ea8cb24b3f854f92563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Interpolation</topic><topic>Object recognition</topic><topic>Performance evaluation</topic><topic>Performance measurement</topic><topic>Prediction models</topic><topic>Semantic web</topic><topic>Statistical analysis</topic><topic>Table tennis</topic><topic>Tennis</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Zechen</creatorcontrib><creatorcontrib>Liu, Jun</creatorcontrib><creatorcontrib>Zheng, Yida</creatorcontrib><creatorcontrib>Yu, Yang</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal on semantic web and information systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Zechen</au><au>Liu, Jun</au><au>Zheng, Yida</au><au>Yu, Yang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information</atitle><jtitle>International journal on semantic web and information systems</jtitle><date>2024-01-01</date><risdate>2024</risdate><volume>20</volume><issue>1</issue><spage>1</spage><epage>22</epage><pages>1-22</pages><issn>1552-6283</issn><eissn>1552-6291</eissn><abstract>Restoring the trajectory of a bat from a table tennis match video is critical in analyzing a table tennis technique and conducting statistical analysis. However, directly bat location detection in each frame is challenging due to changing shapes caused by varying movement directions and speeds, leading to ambiguity. This paper develops a novel two-stage method. The first stage utilizes YOLO for bat detection in each frame, followed by filtering out erroneous candidate boxes. In the second stage, the authors use a temporal prediction model that integrating human keypoint information and interpolation to reconstruct a complete bat trajectory with minimal errors. The method's effectiveness and performance are evaluated on our video datasets. The evaluation results demonstrate that the proposed method outperforms traditional methods on precision performance metrics. The error screening algorithm improves precision score to nearly 1. In addition, the method has the recall score 22.3% higher than YOLO 's and also 1.4% higher than that of YOLO with cubic spline interpolation.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJSWIS.338999</doi><tpages>22</tpages><orcidid>https://orcid.org/0009-0009-2592-2726</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-6283
ispartof International journal on semantic web and information systems, 2024-01, Vol.20 (1), p.1-22
issn 1552-6283
1552-6291
language eng
recordid cdi_crossref_primary_10_4018_IJSWIS_338999
source ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Interpolation
Object recognition
Performance evaluation
Performance measurement
Prediction models
Semantic web
Statistical analysis
Table tennis
Tennis
Trajectories
title A Semantic Web-Based Approach for Bat Trajectory Reconstruction With Human Keypoint Information
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T23%3A59%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Semantic%20Web-Based%20Approach%20for%20Bat%20Trajectory%20Reconstruction%20With%20Human%20Keypoint%20Information&rft.jtitle=International%20journal%20on%20semantic%20web%20and%20information%20systems&rft.au=Jin,%20Zechen&rft.date=2024-01-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=22&rft.pages=1-22&rft.issn=1552-6283&rft.eissn=1552-6291&rft_id=info:doi/10.4018/IJSWIS.338999&rft_dat=%3Cproquest_cross%3E2954740005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2954740005&rft_id=info:pmid/&rfr_iscdi=true