Network Support Data Analysis for Fault Identification Using Machine Learning
Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on opera...
Gespeichert in:
Veröffentlicht in: | International journal of software innovation 2019-04, Vol.7 (2), p.41-49 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 49 |
---|---|
container_issue | 2 |
container_start_page | 41 |
container_title | International journal of software innovation |
container_volume | 7 |
creator | Basheer, Shakila Gandhi, Usha Devi Priyan M.K Parthasarathy P |
description | Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers. |
doi_str_mv | 10.4018/IJSI.2019040104 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSI_2019040104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921365574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEhV0ZrXEwJTWj7w8VqWFoBaGwmw5jl1cShJsR6j_HkctVELg5dpX515_OgBcYTSKEc7HxcOqGBGEGQpPFJ-AAcFpGmU4Y6c_9xSdg6FzGxQOY5RQOgDLR-U_G_sGV13bNtbDW-EFnNRiu3PGQd1YOBfd1sOiUrU32kjhTVPDF2fqNVwK-WpqBRdK2Do0LsGZFlunhod6AVbz2fP0Plo83RXTySKSNKU-imOUxTpXiU5SQipMEhkSprlgJRa4kqRMY4xFUlFWSpbpvA-cKSVkqaiiF-B6v7W1zUennOebprMhsuOEEUzTJMniQI33lLSNc1Zp3lrzLuyOY8R7abyXxo_SwsTNfsKszXHlL4q3lQ7k7A8yaOQHjbzXyL81_vNhRr8AjsCCJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921365574</pqid></control><display><type>article</type><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><source>ProQuest Central</source><creator>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</creator><creatorcontrib>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</creatorcontrib><description>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</description><identifier>ISSN: 2166-7160</identifier><identifier>EISSN: 2166-7179</identifier><identifier>DOI: 10.4018/IJSI.2019040104</identifier><language>eng</language><publisher>Mount Pleasant: IGI Global</publisher><subject>Data analysis ; Human error ; Machine learning ; Troubleshooting ; Workflow</subject><ispartof>International journal of software innovation, 2019-04, Vol.7 (2), p.41-49</ispartof><rights>Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</citedby><cites>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2921365574?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Basheer, Shakila</creatorcontrib><creatorcontrib>Gandhi, Usha Devi</creatorcontrib><creatorcontrib>Priyan M.K</creatorcontrib><creatorcontrib>Parthasarathy P</creatorcontrib><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><title>International journal of software innovation</title><description>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</description><subject>Data analysis</subject><subject>Human error</subject><subject>Machine learning</subject><subject>Troubleshooting</subject><subject>Workflow</subject><issn>2166-7160</issn><issn>2166-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAURi0EEhV0ZrXEwJTWj7w8VqWFoBaGwmw5jl1cShJsR6j_HkctVELg5dpX515_OgBcYTSKEc7HxcOqGBGEGQpPFJ-AAcFpGmU4Y6c_9xSdg6FzGxQOY5RQOgDLR-U_G_sGV13bNtbDW-EFnNRiu3PGQd1YOBfd1sOiUrU32kjhTVPDF2fqNVwK-WpqBRdK2Do0LsGZFlunhod6AVbz2fP0Plo83RXTySKSNKU-imOUxTpXiU5SQipMEhkSprlgJRa4kqRMY4xFUlFWSpbpvA-cKSVkqaiiF-B6v7W1zUennOebprMhsuOEEUzTJMniQI33lLSNc1Zp3lrzLuyOY8R7abyXxo_SwsTNfsKszXHlL4q3lQ7k7A8yaOQHjbzXyL81_vNhRr8AjsCCJA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Basheer, Shakila</creator><creator>Gandhi, Usha Devi</creator><creator>Priyan M.K</creator><creator>Parthasarathy P</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><author>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Human error</topic><topic>Machine learning</topic><topic>Troubleshooting</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basheer, Shakila</creatorcontrib><creatorcontrib>Gandhi, Usha Devi</creatorcontrib><creatorcontrib>Priyan M.K</creatorcontrib><creatorcontrib>Parthasarathy P</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of software innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basheer, Shakila</au><au>Gandhi, Usha Devi</au><au>Priyan M.K</au><au>Parthasarathy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Support Data Analysis for Fault Identification Using Machine Learning</atitle><jtitle>International journal of software innovation</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>41</spage><epage>49</epage><pages>41-49</pages><issn>2166-7160</issn><eissn>2166-7179</eissn><abstract>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</abstract><cop>Mount Pleasant</cop><pub>IGI Global</pub><doi>10.4018/IJSI.2019040104</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2166-7160 |
ispartof | International journal of software innovation, 2019-04, Vol.7 (2), p.41-49 |
issn | 2166-7160 2166-7179 |
language | eng |
recordid | cdi_crossref_primary_10_4018_IJSI_2019040104 |
source | ProQuest Central |
subjects | Data analysis Human error Machine learning Troubleshooting Workflow |
title | Network Support Data Analysis for Fault Identification Using Machine Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Support%20Data%20Analysis%20for%20Fault%20Identification%20Using%20Machine%20Learning&rft.jtitle=International%20journal%20of%20software%20innovation&rft.au=Basheer,%20Shakila&rft.date=2019-04-01&rft.volume=7&rft.issue=2&rft.spage=41&rft.epage=49&rft.pages=41-49&rft.issn=2166-7160&rft.eissn=2166-7179&rft_id=info:doi/10.4018/IJSI.2019040104&rft_dat=%3Cproquest_cross%3E2921365574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921365574&rft_id=info:pmid/&rfr_iscdi=true |