Network Support Data Analysis for Fault Identification Using Machine Learning

Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of software innovation 2019-04, Vol.7 (2), p.41-49
Hauptverfasser: Basheer, Shakila, Gandhi, Usha Devi, Priyan M.K, Parthasarathy P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 49
container_issue 2
container_start_page 41
container_title International journal of software innovation
container_volume 7
creator Basheer, Shakila
Gandhi, Usha Devi
Priyan M.K
Parthasarathy P
description Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.
doi_str_mv 10.4018/IJSI.2019040104
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSI_2019040104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2921365574</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</originalsourceid><addsrcrecordid>eNp1kDtPwzAURi0EEhV0ZrXEwJTWj7w8VqWFoBaGwmw5jl1cShJsR6j_HkctVELg5dpX515_OgBcYTSKEc7HxcOqGBGEGQpPFJ-AAcFpGmU4Y6c_9xSdg6FzGxQOY5RQOgDLR-U_G_sGV13bNtbDW-EFnNRiu3PGQd1YOBfd1sOiUrU32kjhTVPDF2fqNVwK-WpqBRdK2Do0LsGZFlunhod6AVbz2fP0Plo83RXTySKSNKU-imOUxTpXiU5SQipMEhkSprlgJRa4kqRMY4xFUlFWSpbpvA-cKSVkqaiiF-B6v7W1zUennOebprMhsuOEEUzTJMniQI33lLSNc1Zp3lrzLuyOY8R7abyXxo_SwsTNfsKszXHlL4q3lQ7k7A8yaOQHjbzXyL81_vNhRr8AjsCCJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2921365574</pqid></control><display><type>article</type><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><source>ProQuest Central</source><creator>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</creator><creatorcontrib>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</creatorcontrib><description>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</description><identifier>ISSN: 2166-7160</identifier><identifier>EISSN: 2166-7179</identifier><identifier>DOI: 10.4018/IJSI.2019040104</identifier><language>eng</language><publisher>Mount Pleasant: IGI Global</publisher><subject>Data analysis ; Human error ; Machine learning ; Troubleshooting ; Workflow</subject><ispartof>International journal of software innovation, 2019-04, Vol.7 (2), p.41-49</ispartof><rights>Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</citedby><cites>FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2921365574?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Basheer, Shakila</creatorcontrib><creatorcontrib>Gandhi, Usha Devi</creatorcontrib><creatorcontrib>Priyan M.K</creatorcontrib><creatorcontrib>Parthasarathy P</creatorcontrib><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><title>International journal of software innovation</title><description>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</description><subject>Data analysis</subject><subject>Human error</subject><subject>Machine learning</subject><subject>Troubleshooting</subject><subject>Workflow</subject><issn>2166-7160</issn><issn>2166-7179</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kDtPwzAURi0EEhV0ZrXEwJTWj7w8VqWFoBaGwmw5jl1cShJsR6j_HkctVELg5dpX515_OgBcYTSKEc7HxcOqGBGEGQpPFJ-AAcFpGmU4Y6c_9xSdg6FzGxQOY5RQOgDLR-U_G_sGV13bNtbDW-EFnNRiu3PGQd1YOBfd1sOiUrU32kjhTVPDF2fqNVwK-WpqBRdK2Do0LsGZFlunhod6AVbz2fP0Plo83RXTySKSNKU-imOUxTpXiU5SQipMEhkSprlgJRa4kqRMY4xFUlFWSpbpvA-cKSVkqaiiF-B6v7W1zUennOebprMhsuOEEUzTJMniQI33lLSNc1Zp3lrzLuyOY8R7abyXxo_SwsTNfsKszXHlL4q3lQ7k7A8yaOQHjbzXyL81_vNhRr8AjsCCJA</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Basheer, Shakila</creator><creator>Gandhi, Usha Devi</creator><creator>Priyan M.K</creator><creator>Parthasarathy P</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>20190401</creationdate><title>Network Support Data Analysis for Fault Identification Using Machine Learning</title><author>Basheer, Shakila ; Gandhi, Usha Devi ; Priyan M.K ; Parthasarathy P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-44074f8e5f5622d125c16668a9b1a1dc2b6411a5d39bc97f800097eeacbe3e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Data analysis</topic><topic>Human error</topic><topic>Machine learning</topic><topic>Troubleshooting</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Basheer, Shakila</creatorcontrib><creatorcontrib>Gandhi, Usha Devi</creatorcontrib><creatorcontrib>Priyan M.K</creatorcontrib><creatorcontrib>Parthasarathy P</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of software innovation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Basheer, Shakila</au><au>Gandhi, Usha Devi</au><au>Priyan M.K</au><au>Parthasarathy P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Network Support Data Analysis for Fault Identification Using Machine Learning</atitle><jtitle>International journal of software innovation</jtitle><date>2019-04-01</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>41</spage><epage>49</epage><pages>41-49</pages><issn>2166-7160</issn><eissn>2166-7179</eissn><abstract>Machine learning has gained immense popularity in a variety of fields as it has the ability to change the conventional workflow of a process. The abundance of data available serves as the motivation for this. This data can be exploited for a good deal of knowledge. In this article, we focus on operational data of networking devices that are deployed in different locations. This data can be used to predict faults in the devices. Usually, after the deployment of networking devices in customer site, troubleshooting these devices is difficult. Operational data of these devices is needed for this process. Manually analysing the machined produced operational data is tedious and complex due to enormity of data. Using machine learning techniques will be of greater help here as this will help automate the troubleshooting process, avoid human errors and save time for the technical solutions engineers.</abstract><cop>Mount Pleasant</cop><pub>IGI Global</pub><doi>10.4018/IJSI.2019040104</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2166-7160
ispartof International journal of software innovation, 2019-04, Vol.7 (2), p.41-49
issn 2166-7160
2166-7179
language eng
recordid cdi_crossref_primary_10_4018_IJSI_2019040104
source ProQuest Central
subjects Data analysis
Human error
Machine learning
Troubleshooting
Workflow
title Network Support Data Analysis for Fault Identification Using Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T16%3A19%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Network%20Support%20Data%20Analysis%20for%20Fault%20Identification%20Using%20Machine%20Learning&rft.jtitle=International%20journal%20of%20software%20innovation&rft.au=Basheer,%20Shakila&rft.date=2019-04-01&rft.volume=7&rft.issue=2&rft.spage=41&rft.epage=49&rft.pages=41-49&rft.issn=2166-7160&rft.eissn=2166-7179&rft_id=info:doi/10.4018/IJSI.2019040104&rft_dat=%3Cproquest_cross%3E2921365574%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2921365574&rft_id=info:pmid/&rfr_iscdi=true