Parallelization of Enhanced Firework Algorithm using MapReduce
Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algo...
Gespeichert in:
Veröffentlicht in: | International journal of swarm intelligence research 2015-04, Vol.6 (2), p.32-51 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 51 |
---|---|
container_issue | 2 |
container_start_page | 32 |
container_title | International journal of swarm intelligence research |
container_volume | 6 |
creator | Ludwig, Simone A Dawar, Deepak |
description | Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions. |
doi_str_mv | 10.4018/IJSIR.2015040102 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSIR_2015040102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932401736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOObuHgtevHQmza_2IoyxzslEmXoOaZtsmV1TkxbRv97q1OnAXJLA87583wPAKYJDAlF8Mbu-ny2GEUQUdn8YHYAeSggPk4ijw583w8dg4P0adocSzinugcs76WRZqtK8ycbYKrA6mFQrWeWqCFLj1It1T8GoXFpnmtUmaL2plsGNrBeqaHN1Ao60LL0afN198JhOHsZX4fx2OhuP5mGOMWzCJItyTQhlCrM4KbI4h5ThGBLJeSY14yqDGSWqoFISqRJJEEYZoxgRTXgMcR-cb3trZ59b5RuxMT5XZSkrZVsvEEdxwjAlcYee7aFr27qqm05ECY46PxyzjoJbKnfWe6e0qJ3ZSPcqEBQfTsWnU7Fz2kXSbcQsza7zlzthtfh2J9L_ethumT9F-5yoC43fATw1jBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932401736</pqid></control><display><type>article</type><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ludwig, Simone A ; Dawar, Deepak</creator><creatorcontrib>Ludwig, Simone A ; Dawar, Deepak</creatorcontrib><description>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</description><identifier>ISSN: 1947-9263</identifier><identifier>EISSN: 1947-9271</identifier><identifier>DOI: 10.4018/IJSIR.2015040102</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Computation ; Fireworks ; Mathematical analysis ; Optimization ; Parallel processing ; Platforms ; Swarm intelligence</subject><ispartof>International journal of swarm intelligence research, 2015-04, Vol.6 (2), p.32-51</ispartof><rights>Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932401736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Ludwig, Simone A</creatorcontrib><creatorcontrib>Dawar, Deepak</creatorcontrib><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><title>International journal of swarm intelligence research</title><description>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Fireworks</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Platforms</subject><subject>Swarm intelligence</subject><issn>1947-9263</issn><issn>1947-9271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOObuHgtevHQmza_2IoyxzslEmXoOaZtsmV1TkxbRv97q1OnAXJLA87583wPAKYJDAlF8Mbu-ny2GEUQUdn8YHYAeSggPk4ijw583w8dg4P0adocSzinugcs76WRZqtK8ycbYKrA6mFQrWeWqCFLj1It1T8GoXFpnmtUmaL2plsGNrBeqaHN1Ao60LL0afN198JhOHsZX4fx2OhuP5mGOMWzCJItyTQhlCrM4KbI4h5ThGBLJeSY14yqDGSWqoFISqRJJEEYZoxgRTXgMcR-cb3trZ59b5RuxMT5XZSkrZVsvEEdxwjAlcYee7aFr27qqm05ECY46PxyzjoJbKnfWe6e0qJ3ZSPcqEBQfTsWnU7Fz2kXSbcQsza7zlzthtfh2J9L_ethumT9F-5yoC43fATw1jBc</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Ludwig, Simone A</creator><creator>Dawar, Deepak</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150401</creationdate><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><author>Ludwig, Simone A ; Dawar, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Fireworks</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Platforms</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, Simone A</creatorcontrib><creatorcontrib>Dawar, Deepak</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of swarm intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, Simone A</au><au>Dawar, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelization of Enhanced Firework Algorithm using MapReduce</atitle><jtitle>International journal of swarm intelligence research</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>6</volume><issue>2</issue><spage>32</spage><epage>51</epage><pages>32-51</pages><issn>1947-9263</issn><eissn>1947-9271</eissn><abstract>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJSIR.2015040102</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-9263 |
ispartof | International journal of swarm intelligence research, 2015-04, Vol.6 (2), p.32-51 |
issn | 1947-9263 1947-9271 |
language | eng |
recordid | cdi_crossref_primary_10_4018_IJSIR_2015040102 |
source | Alma/SFX Local Collection; ProQuest Central |
subjects | Algorithms Computation Fireworks Mathematical analysis Optimization Parallel processing Platforms Swarm intelligence |
title | Parallelization of Enhanced Firework Algorithm using MapReduce |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelization%20of%20Enhanced%20Firework%20Algorithm%20using%20MapReduce&rft.jtitle=International%20journal%20of%20swarm%20intelligence%20research&rft.au=Ludwig,%20Simone%20A&rft.date=2015-04-01&rft.volume=6&rft.issue=2&rft.spage=32&rft.epage=51&rft.pages=32-51&rft.issn=1947-9263&rft.eissn=1947-9271&rft_id=info:doi/10.4018/IJSIR.2015040102&rft_dat=%3Cproquest_cross%3E2932401736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932401736&rft_id=info:pmid/&rfr_iscdi=true |