Parallelization of Enhanced Firework Algorithm using MapReduce

Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of swarm intelligence research 2015-04, Vol.6 (2), p.32-51
Hauptverfasser: Ludwig, Simone A, Dawar, Deepak
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 51
container_issue 2
container_start_page 32
container_title International journal of swarm intelligence research
container_volume 6
creator Ludwig, Simone A
Dawar, Deepak
description Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.
doi_str_mv 10.4018/IJSIR.2015040102
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJSIR_2015040102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2932401736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</originalsourceid><addsrcrecordid>eNp1kM9LwzAYhoMoOObuHgtevHQmza_2IoyxzslEmXoOaZtsmV1TkxbRv97q1OnAXJLA87583wPAKYJDAlF8Mbu-ny2GEUQUdn8YHYAeSggPk4ijw583w8dg4P0adocSzinugcs76WRZqtK8ycbYKrA6mFQrWeWqCFLj1It1T8GoXFpnmtUmaL2plsGNrBeqaHN1Ao60LL0afN198JhOHsZX4fx2OhuP5mGOMWzCJItyTQhlCrM4KbI4h5ThGBLJeSY14yqDGSWqoFISqRJJEEYZoxgRTXgMcR-cb3trZ59b5RuxMT5XZSkrZVsvEEdxwjAlcYee7aFr27qqm05ECY46PxyzjoJbKnfWe6e0qJ3ZSPcqEBQfTsWnU7Fz2kXSbcQsza7zlzthtfh2J9L_ethumT9F-5yoC43fATw1jBc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932401736</pqid></control><display><type>article</type><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Ludwig, Simone A ; Dawar, Deepak</creator><creatorcontrib>Ludwig, Simone A ; Dawar, Deepak</creatorcontrib><description>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</description><identifier>ISSN: 1947-9263</identifier><identifier>EISSN: 1947-9271</identifier><identifier>DOI: 10.4018/IJSIR.2015040102</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Computation ; Fireworks ; Mathematical analysis ; Optimization ; Parallel processing ; Platforms ; Swarm intelligence</subject><ispartof>International journal of swarm intelligence research, 2015-04, Vol.6 (2), p.32-51</ispartof><rights>Copyright © 2015, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932401736?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,33722,43781</link.rule.ids></links><search><creatorcontrib>Ludwig, Simone A</creatorcontrib><creatorcontrib>Dawar, Deepak</creatorcontrib><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><title>International journal of swarm intelligence research</title><description>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Fireworks</subject><subject>Mathematical analysis</subject><subject>Optimization</subject><subject>Parallel processing</subject><subject>Platforms</subject><subject>Swarm intelligence</subject><issn>1947-9263</issn><issn>1947-9271</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kM9LwzAYhoMoOObuHgtevHQmza_2IoyxzslEmXoOaZtsmV1TkxbRv97q1OnAXJLA87583wPAKYJDAlF8Mbu-ny2GEUQUdn8YHYAeSggPk4ijw583w8dg4P0adocSzinugcs76WRZqtK8ycbYKrA6mFQrWeWqCFLj1It1T8GoXFpnmtUmaL2plsGNrBeqaHN1Ao60LL0afN198JhOHsZX4fx2OhuP5mGOMWzCJItyTQhlCrM4KbI4h5ThGBLJeSY14yqDGSWqoFISqRJJEEYZoxgRTXgMcR-cb3trZ59b5RuxMT5XZSkrZVsvEEdxwjAlcYee7aFr27qqm05ECY46PxyzjoJbKnfWe6e0qJ3ZSPcqEBQfTsWnU7Fz2kXSbcQsza7zlzthtfh2J9L_ethumT9F-5yoC43fATw1jBc</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Ludwig, Simone A</creator><creator>Dawar, Deepak</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7S</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20150401</creationdate><title>Parallelization of Enhanced Firework Algorithm using MapReduce</title><author>Ludwig, Simone A ; Dawar, Deepak</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-9b2cf4456e3689db8c0563804a77baf67eb0b54ed5aa4ae9a4131b65314f47803</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Fireworks</topic><topic>Mathematical analysis</topic><topic>Optimization</topic><topic>Parallel processing</topic><topic>Platforms</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ludwig, Simone A</creatorcontrib><creatorcontrib>Dawar, Deepak</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>International journal of swarm intelligence research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ludwig, Simone A</au><au>Dawar, Deepak</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parallelization of Enhanced Firework Algorithm using MapReduce</atitle><jtitle>International journal of swarm intelligence research</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>6</volume><issue>2</issue><spage>32</spage><epage>51</epage><pages>32-51</pages><issn>1947-9263</issn><eissn>1947-9271</eissn><abstract>Swarm intelligence algorithms are inherently parallel since different individuals in the swarm perform independent computations at different positions simultaneously. Hence, these algorithms lend themselves well to parallel implementations thereby speeding up the optimization process. FireWorks Algorithm (FWA) is a recently proposed swarm intelligence algorithm for optimization. This work investigates the scalability of the parallelization of the Enhanced FireWorks Algorithm (EFWA), which is an improved version of FWA. The authors use the MapReduce platform for parallelizing EFWA, investigate its ability to scale, and report on the speedup obtained on different benchmark functions for increasing problem dimensions.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJSIR.2015040102</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1947-9263
ispartof International journal of swarm intelligence research, 2015-04, Vol.6 (2), p.32-51
issn 1947-9263
1947-9271
language eng
recordid cdi_crossref_primary_10_4018_IJSIR_2015040102
source Alma/SFX Local Collection; ProQuest Central
subjects Algorithms
Computation
Fireworks
Mathematical analysis
Optimization
Parallel processing
Platforms
Swarm intelligence
title Parallelization of Enhanced Firework Algorithm using MapReduce
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A17%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parallelization%20of%20Enhanced%20Firework%20Algorithm%20using%20MapReduce&rft.jtitle=International%20journal%20of%20swarm%20intelligence%20research&rft.au=Ludwig,%20Simone%20A&rft.date=2015-04-01&rft.volume=6&rft.issue=2&rft.spage=32&rft.epage=51&rft.pages=32-51&rft.issn=1947-9263&rft.eissn=1947-9271&rft_id=info:doi/10.4018/IJSIR.2015040102&rft_dat=%3Cproquest_cross%3E2932401736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932401736&rft_id=info:pmid/&rfr_iscdi=true