Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer

Aim of this article is to investigate the potential of Artificial Intelligence (AI) in the discrimination between benign and malignant endometrial nuclei and lesions. For this purpose, 416 histologically confirmed liquid-based cytological smears were collected and morphometric characteristics of cel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of reliable and quality e-healthcare 2018-04, Vol.7 (2), p.37-50
Hauptverfasser: Pouliakis, Abraham, Margari, Niki, Karakitsou, Effrosyni, Alamanou, Evangelia, Koureas, Nikolaos, Chrelias, George, Sioulas, Vasileios, Pappas, Asimakis, Chrelias, Charalambos, Terzakis, Emmanouil G, Damaskou, Vasileia, Panayiotides, Ioannis G, Karakitsos, Petros
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 50
container_issue 2
container_start_page 37
container_title International journal of reliable and quality e-healthcare
container_volume 7
creator Pouliakis, Abraham
Margari, Niki
Karakitsou, Effrosyni
Alamanou, Evangelia
Koureas, Nikolaos
Chrelias, George
Sioulas, Vasileios
Pappas, Asimakis
Chrelias, Charalambos
Terzakis, Emmanouil G
Damaskou, Vasileia
Panayiotides, Ioannis G
Karakitsos, Petros
description Aim of this article is to investigate the potential of Artificial Intelligence (AI) in the discrimination between benign and malignant endometrial nuclei and lesions. For this purpose, 416 histologically confirmed liquid-based cytological smears were collected and morphometric characteristics of cell nuclei were measured via image analysis. Then, 50% of the cases were used to train an AI system, specifically a learning vector quantization (LVQ) neural network. As a result, cell nuclei were classified as benign or malignant. Data from the remaining 50% of the cases were used to evaluate the AI system performance. By nucleic classification, an algorithm for the classification of individual patients was constructed, and performance indices on patient classification were calculated. The sensitivity for the classification of nuclei was 77.95%, and the specificity was 73.93%. For the classification of individual patients, the sensitivity was 90.70% and the specificity 82.79%. These results indicate that an AI system can have an important role in endometrial lesions classification.
doi_str_mv 10.4018/IJRQEH.2018040103
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJRQEH_2018040103</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760946202</galeid><sourcerecordid>A760946202</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2817-405ae4f1ee69de47870e7cca603dfd6d5545f6935c43713c5b0ccd527fb9dff43</originalsourceid><addsrcrecordid>eNp1kU9LHDEchgdpoWL9AN4GPBVcmz-TZMfbIqtu2SKKld5CNvlljMxmpkkG1E_fbKd0V6o5JCE875uEpyiOMDqtEJ5-XXy7vZlfnZK8R_kA0b1in2COJjXjPz_82zP8qTiM8RHlwRGjNd0vnmYhOeu0U2258Ana1jXgNZS2C2V6gHJhwP8hVHKdLztbzr3p1pDCJvJdZd4rrx3Es3LW9-0OuIkvQQXvfFPeg0658mZQue4Fwufio1VthMO_60Hx42J-d341WV5fLs5ny4kmUywmFWIKKosBeG2gElOBQGitOKLGGm4Yq5jlNWW6ogJTzVZIa8OIsKvaWFvRg-J47O1D92uAmORjNwSfr5SkpoROCRZiSzWqBem87VJQeu2iljPBUV1xgkimTnao1RCdh5in6JqHFBs1xPgaxyOuQxdjACv74NYqPEuM5EacHMXJrbicuRwzrnHbl46C5K4gmQXJ9G7R5ktf3mj6D5S9sfQ3zTewtg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2932382177</pqid></control><display><type>article</type><title>Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer</title><source>ProQuest Central Essentials</source><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Student</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>ProQuest Central</source><creator>Pouliakis, Abraham ; Margari, Niki ; Karakitsou, Effrosyni ; Alamanou, Evangelia ; Koureas, Nikolaos ; Chrelias, George ; Sioulas, Vasileios ; Pappas, Asimakis ; Chrelias, Charalambos ; Terzakis, Emmanouil G ; Damaskou, Vasileia ; Panayiotides, Ioannis G ; Karakitsos, Petros</creator><creatorcontrib>Pouliakis, Abraham ; Margari, Niki ; Karakitsou, Effrosyni ; Alamanou, Evangelia ; Koureas, Nikolaos ; Chrelias, George ; Sioulas, Vasileios ; Pappas, Asimakis ; Chrelias, Charalambos ; Terzakis, Emmanouil G ; Damaskou, Vasileia ; Panayiotides, Ioannis G ; Karakitsos, Petros</creatorcontrib><description>Aim of this article is to investigate the potential of Artificial Intelligence (AI) in the discrimination between benign and malignant endometrial nuclei and lesions. For this purpose, 416 histologically confirmed liquid-based cytological smears were collected and morphometric characteristics of cell nuclei were measured via image analysis. Then, 50% of the cases were used to train an AI system, specifically a learning vector quantization (LVQ) neural network. As a result, cell nuclei were classified as benign or malignant. Data from the remaining 50% of the cases were used to evaluate the AI system performance. By nucleic classification, an algorithm for the classification of individual patients was constructed, and performance indices on patient classification were calculated. The sensitivity for the classification of nuclei was 77.95%, and the specificity was 73.93%. For the classification of individual patients, the sensitivity was 90.70% and the specificity 82.79%. These results indicate that an AI system can have an important role in endometrial lesions classification.</description><identifier>ISSN: 2160-9551</identifier><identifier>EISSN: 2160-956X</identifier><identifier>DOI: 10.4018/IJRQEH.2018040103</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Artificial intelligence ; Cancer ; Classification ; Endometrial cancer ; Image analysis ; Learning vector quantization networks ; Lesions ; Neural networks ; Nuclei (cytology) ; Performance indices ; Sensitivity</subject><ispartof>International journal of reliable and quality e-healthcare, 2018-04, Vol.7 (2), p.37-50</ispartof><rights>COPYRIGHT 2018 IGI Global</rights><rights>Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2817-405ae4f1ee69de47870e7cca603dfd6d5545f6935c43713c5b0ccd527fb9dff43</cites><orcidid>0000-0002-0074-3619 ; 0000-0002-6584-8833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2932382177?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>315,781,785,21392,21393,21394,21395,23260,27928,27929,33534,33707,33748,34009,34318,43663,43791,43809,43957,44071,64389,64393,72473</link.rule.ids></links><search><creatorcontrib>Pouliakis, Abraham</creatorcontrib><creatorcontrib>Margari, Niki</creatorcontrib><creatorcontrib>Karakitsou, Effrosyni</creatorcontrib><creatorcontrib>Alamanou, Evangelia</creatorcontrib><creatorcontrib>Koureas, Nikolaos</creatorcontrib><creatorcontrib>Chrelias, George</creatorcontrib><creatorcontrib>Sioulas, Vasileios</creatorcontrib><creatorcontrib>Pappas, Asimakis</creatorcontrib><creatorcontrib>Chrelias, Charalambos</creatorcontrib><creatorcontrib>Terzakis, Emmanouil G</creatorcontrib><creatorcontrib>Damaskou, Vasileia</creatorcontrib><creatorcontrib>Panayiotides, Ioannis G</creatorcontrib><creatorcontrib>Karakitsos, Petros</creatorcontrib><title>Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer</title><title>International journal of reliable and quality e-healthcare</title><description>Aim of this article is to investigate the potential of Artificial Intelligence (AI) in the discrimination between benign and malignant endometrial nuclei and lesions. For this purpose, 416 histologically confirmed liquid-based cytological smears were collected and morphometric characteristics of cell nuclei were measured via image analysis. Then, 50% of the cases were used to train an AI system, specifically a learning vector quantization (LVQ) neural network. As a result, cell nuclei were classified as benign or malignant. Data from the remaining 50% of the cases were used to evaluate the AI system performance. By nucleic classification, an algorithm for the classification of individual patients was constructed, and performance indices on patient classification were calculated. The sensitivity for the classification of nuclei was 77.95%, and the specificity was 73.93%. For the classification of individual patients, the sensitivity was 90.70% and the specificity 82.79%. These results indicate that an AI system can have an important role in endometrial lesions classification.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Classification</subject><subject>Endometrial cancer</subject><subject>Image analysis</subject><subject>Learning vector quantization networks</subject><subject>Lesions</subject><subject>Neural networks</subject><subject>Nuclei (cytology)</subject><subject>Performance indices</subject><subject>Sensitivity</subject><issn>2160-9551</issn><issn>2160-956X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU9LHDEchgdpoWL9AN4GPBVcmz-TZMfbIqtu2SKKld5CNvlljMxmpkkG1E_fbKd0V6o5JCE875uEpyiOMDqtEJ5-XXy7vZlfnZK8R_kA0b1in2COJjXjPz_82zP8qTiM8RHlwRGjNd0vnmYhOeu0U2258Ana1jXgNZS2C2V6gHJhwP8hVHKdLztbzr3p1pDCJvJdZd4rrx3Es3LW9-0OuIkvQQXvfFPeg0658mZQue4Fwufio1VthMO_60Hx42J-d341WV5fLs5ny4kmUywmFWIKKosBeG2gElOBQGitOKLGGm4Yq5jlNWW6ogJTzVZIa8OIsKvaWFvRg-J47O1D92uAmORjNwSfr5SkpoROCRZiSzWqBem87VJQeu2iljPBUV1xgkimTnao1RCdh5in6JqHFBs1xPgaxyOuQxdjACv74NYqPEuM5EacHMXJrbicuRwzrnHbl46C5K4gmQXJ9G7R5ktf3mj6D5S9sfQ3zTewtg</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pouliakis, Abraham</creator><creator>Margari, Niki</creator><creator>Karakitsou, Effrosyni</creator><creator>Alamanou, Evangelia</creator><creator>Koureas, Nikolaos</creator><creator>Chrelias, George</creator><creator>Sioulas, Vasileios</creator><creator>Pappas, Asimakis</creator><creator>Chrelias, Charalambos</creator><creator>Terzakis, Emmanouil G</creator><creator>Damaskou, Vasileia</creator><creator>Panayiotides, Ioannis G</creator><creator>Karakitsos, Petros</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88C</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M0T</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-0074-3619</orcidid><orcidid>https://orcid.org/0000-0002-6584-8833</orcidid></search><sort><creationdate>20180401</creationdate><title>Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer</title><author>Pouliakis, Abraham ; Margari, Niki ; Karakitsou, Effrosyni ; Alamanou, Evangelia ; Koureas, Nikolaos ; Chrelias, George ; Sioulas, Vasileios ; Pappas, Asimakis ; Chrelias, Charalambos ; Terzakis, Emmanouil G ; Damaskou, Vasileia ; Panayiotides, Ioannis G ; Karakitsos, Petros</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2817-405ae4f1ee69de47870e7cca603dfd6d5545f6935c43713c5b0ccd527fb9dff43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Classification</topic><topic>Endometrial cancer</topic><topic>Image analysis</topic><topic>Learning vector quantization networks</topic><topic>Lesions</topic><topic>Neural networks</topic><topic>Nuclei (cytology)</topic><topic>Performance indices</topic><topic>Sensitivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pouliakis, Abraham</creatorcontrib><creatorcontrib>Margari, Niki</creatorcontrib><creatorcontrib>Karakitsou, Effrosyni</creatorcontrib><creatorcontrib>Alamanou, Evangelia</creatorcontrib><creatorcontrib>Koureas, Nikolaos</creatorcontrib><creatorcontrib>Chrelias, George</creatorcontrib><creatorcontrib>Sioulas, Vasileios</creatorcontrib><creatorcontrib>Pappas, Asimakis</creatorcontrib><creatorcontrib>Chrelias, Charalambos</creatorcontrib><creatorcontrib>Terzakis, Emmanouil G</creatorcontrib><creatorcontrib>Damaskou, Vasileia</creatorcontrib><creatorcontrib>Panayiotides, Ioannis G</creatorcontrib><creatorcontrib>Karakitsos, Petros</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Healthcare Administration Database (Alumni)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Healthcare Administration Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>International journal of reliable and quality e-healthcare</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pouliakis, Abraham</au><au>Margari, Niki</au><au>Karakitsou, Effrosyni</au><au>Alamanou, Evangelia</au><au>Koureas, Nikolaos</au><au>Chrelias, George</au><au>Sioulas, Vasileios</au><au>Pappas, Asimakis</au><au>Chrelias, Charalambos</au><au>Terzakis, Emmanouil G</au><au>Damaskou, Vasileia</au><au>Panayiotides, Ioannis G</au><au>Karakitsos, Petros</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer</atitle><jtitle>International journal of reliable and quality e-healthcare</jtitle><date>2018-04-01</date><risdate>2018</risdate><volume>7</volume><issue>2</issue><spage>37</spage><epage>50</epage><pages>37-50</pages><issn>2160-9551</issn><eissn>2160-956X</eissn><abstract>Aim of this article is to investigate the potential of Artificial Intelligence (AI) in the discrimination between benign and malignant endometrial nuclei and lesions. For this purpose, 416 histologically confirmed liquid-based cytological smears were collected and morphometric characteristics of cell nuclei were measured via image analysis. Then, 50% of the cases were used to train an AI system, specifically a learning vector quantization (LVQ) neural network. As a result, cell nuclei were classified as benign or malignant. Data from the remaining 50% of the cases were used to evaluate the AI system performance. By nucleic classification, an algorithm for the classification of individual patients was constructed, and performance indices on patient classification were calculated. The sensitivity for the classification of nuclei was 77.95%, and the specificity was 73.93%. For the classification of individual patients, the sensitivity was 90.70% and the specificity 82.79%. These results indicate that an AI system can have an important role in endometrial lesions classification.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJRQEH.2018040103</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0074-3619</orcidid><orcidid>https://orcid.org/0000-0002-6584-8833</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2160-9551
ispartof International journal of reliable and quality e-healthcare, 2018-04, Vol.7 (2), p.37-50
issn 2160-9551
2160-956X
language eng
recordid cdi_crossref_primary_10_4018_IJRQEH_2018040103
source ProQuest Central Essentials; ProQuest Central (Alumni Edition); ProQuest Central Student; ProQuest Central Korea; ProQuest Central UK/Ireland; ProQuest Central
subjects Algorithms
Artificial intelligence
Cancer
Classification
Endometrial cancer
Image analysis
Learning vector quantization networks
Lesions
Neural networks
Nuclei (cytology)
Performance indices
Sensitivity
title Artificial Intelligence for the Identification of Endometrial Malignancies: Application of the Learning Vector Quantizer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T13%3A49%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20Intelligence%20for%20the%20Identification%20of%20Endometrial%20Malignancies:%20Application%20of%20the%20Learning%20Vector%20Quantizer&rft.jtitle=International%20journal%20of%20reliable%20and%20quality%20e-healthcare&rft.au=Pouliakis,%20Abraham&rft.date=2018-04-01&rft.volume=7&rft.issue=2&rft.spage=37&rft.epage=50&rft.pages=37-50&rft.issn=2160-9551&rft.eissn=2160-956X&rft_id=info:doi/10.4018/IJRQEH.2018040103&rft_dat=%3Cgale_cross%3EA760946202%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2932382177&rft_id=info:pmid/&rft_galeid=A760946202&rfr_iscdi=true