Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface
The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computati...
Gespeichert in:
Veröffentlicht in: | International journal of information systems and supply chain management 2022-01, Vol.15 (4), p.1-15 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | International journal of information systems and supply chain management |
container_volume | 15 |
creator | Wang, Lanjing J, Alfred Daniel Vadivel, Thanjai |
description | The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%). |
doi_str_mv | 10.4018/IJISSCM.305846 |
format | Article |
fullrecord | <record><control><sourceid>gale_econi</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJISSCM_305846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760500950</galeid><sourcerecordid>A760500950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</originalsourceid><addsrcrecordid>eNptkDtPwzAQgCMEEqWwMvsHkHKu4zzGqgIa1AqJFlVMlmNfEletjeJk4N-TKi0sLHc3fPf6guCewiQCmj7mr_l6PV9NGPA0ii-CEc0YD3nCosvfehpfBzfe7wB4ljEYBZ_v6FE2qibOkqWrjG-NIlvZYO06j2StatTd3tiKrKSVFR7QtmRr2prkbkOk1WTRHaQNV1LVxiLJbYtNKRXeBlel3Hu8O-Vx8PH8tJkvwuXbSz6fLUPFMmhDVtAoKUDr_kAdpUVBZcQgYnEyTaYoESDlECuMECTTGqnSXGdxkZZTWRa8ZOPgYZhbyT2KovP9Fb4P3lR16yvZeS9mSQwcIOPQ45MBV43zvsFSfDXmIJtvQUEcPYqTRzF47BvI0IDKWeP_8JTTXiNN0x55GhBTGbFzXWP7h8XRqnBWnK2Ks9X_F1HOfgBh8Yi2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</creator><creatorcontrib>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</creatorcontrib><description>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</description><identifier>ISSN: 1935-5726</identifier><identifier>EISSN: 1935-5734</identifier><identifier>DOI: 10.4018/IJISSCM.305846</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Middleware ; Warehouse stores</subject><ispartof>International journal of information systems and supply chain management, 2022-01, Vol.15 (4), p.1-15</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Lanjing</creatorcontrib><creatorcontrib>J, Alfred Daniel</creatorcontrib><creatorcontrib>Vadivel, Thanjai</creatorcontrib><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><title>International journal of information systems and supply chain management</title><description>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</description><subject>Middleware</subject><subject>Warehouse stores</subject><issn>1935-5726</issn><issn>1935-5734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNptkDtPwzAQgCMEEqWwMvsHkHKu4zzGqgIa1AqJFlVMlmNfEletjeJk4N-TKi0sLHc3fPf6guCewiQCmj7mr_l6PV9NGPA0ii-CEc0YD3nCosvfehpfBzfe7wB4ljEYBZ_v6FE2qibOkqWrjG-NIlvZYO06j2StatTd3tiKrKSVFR7QtmRr2prkbkOk1WTRHaQNV1LVxiLJbYtNKRXeBlel3Hu8O-Vx8PH8tJkvwuXbSz6fLUPFMmhDVtAoKUDr_kAdpUVBZcQgYnEyTaYoESDlECuMECTTGqnSXGdxkZZTWRa8ZOPgYZhbyT2KovP9Fb4P3lR16yvZeS9mSQwcIOPQ45MBV43zvsFSfDXmIJtvQUEcPYqTRzF47BvI0IDKWeP_8JTTXiNN0x55GhBTGbFzXWP7h8XRqnBWnK2Ks9X_F1HOfgBh8Yi2</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Lanjing</creator><creator>J, Alfred Daniel</creator><creator>Vadivel, Thanjai</creator><general>IGI Global</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20220101</creationdate><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><author>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Middleware</topic><topic>Warehouse stores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lanjing</creatorcontrib><creatorcontrib>J, Alfred Daniel</creatorcontrib><creatorcontrib>Vadivel, Thanjai</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of information systems and supply chain management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lanjing</au><au>J, Alfred Daniel</au><au>Vadivel, Thanjai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</atitle><jtitle>International journal of information systems and supply chain management</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1935-5726</issn><eissn>1935-5734</eissn><abstract>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</abstract><pub>IGI Global</pub><doi>10.4018/IJISSCM.305846</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1935-5726 |
ispartof | International journal of information systems and supply chain management, 2022-01, Vol.15 (4), p.1-15 |
issn | 1935-5726 1935-5734 |
language | eng |
recordid | cdi_crossref_primary_10_4018_IJISSCM_305846 |
source | ProQuest Central (Alumni Edition); ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central |
subjects | Middleware Warehouse stores |
title | Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Logistic%20Warehouse%20Scheduling%20Management%20With%20IoT%20and%20Human-Machine%20Interface&rft.jtitle=International%20journal%20of%20information%20systems%20and%20supply%20chain%20management&rft.au=Wang,%20Lanjing&rft.date=2022-01-01&rft.volume=15&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1935-5726&rft.eissn=1935-5734&rft_id=info:doi/10.4018/IJISSCM.305846&rft_dat=%3Cgale_econi%3EA760500950%3C/gale_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760500950&rfr_iscdi=true |