Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface

The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computati...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of information systems and supply chain management 2022-01, Vol.15 (4), p.1-15
Hauptverfasser: Wang, Lanjing, J, Alfred Daniel, Vadivel, Thanjai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 4
container_start_page 1
container_title International journal of information systems and supply chain management
container_volume 15
creator Wang, Lanjing
J, Alfred Daniel
Vadivel, Thanjai
description The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).
doi_str_mv 10.4018/IJISSCM.305846
format Article
fullrecord <record><control><sourceid>gale_econi</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJISSCM_305846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A760500950</galeid><sourcerecordid>A760500950</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</originalsourceid><addsrcrecordid>eNptkDtPwzAQgCMEEqWwMvsHkHKu4zzGqgIa1AqJFlVMlmNfEletjeJk4N-TKi0sLHc3fPf6guCewiQCmj7mr_l6PV9NGPA0ii-CEc0YD3nCosvfehpfBzfe7wB4ljEYBZ_v6FE2qibOkqWrjG-NIlvZYO06j2StatTd3tiKrKSVFR7QtmRr2prkbkOk1WTRHaQNV1LVxiLJbYtNKRXeBlel3Hu8O-Vx8PH8tJkvwuXbSz6fLUPFMmhDVtAoKUDr_kAdpUVBZcQgYnEyTaYoESDlECuMECTTGqnSXGdxkZZTWRa8ZOPgYZhbyT2KovP9Fb4P3lR16yvZeS9mSQwcIOPQ45MBV43zvsFSfDXmIJtvQUEcPYqTRzF47BvI0IDKWeP_8JTTXiNN0x55GhBTGbFzXWP7h8XRqnBWnK2Ks9X_F1HOfgBh8Yi2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><source>ProQuest Central (Alumni Edition)</source><source>ProQuest Central Korea</source><source>ProQuest Central UK/Ireland</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</creator><creatorcontrib>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</creatorcontrib><description>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</description><identifier>ISSN: 1935-5726</identifier><identifier>EISSN: 1935-5734</identifier><identifier>DOI: 10.4018/IJISSCM.305846</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Middleware ; Warehouse stores</subject><ispartof>International journal of information systems and supply chain management, 2022-01, Vol.15 (4), p.1-15</ispartof><rights>COPYRIGHT 2022 IGI Global</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wang, Lanjing</creatorcontrib><creatorcontrib>J, Alfred Daniel</creatorcontrib><creatorcontrib>Vadivel, Thanjai</creatorcontrib><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><title>International journal of information systems and supply chain management</title><description>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</description><subject>Middleware</subject><subject>Warehouse stores</subject><issn>1935-5726</issn><issn>1935-5734</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNptkDtPwzAQgCMEEqWwMvsHkHKu4zzGqgIa1AqJFlVMlmNfEletjeJk4N-TKi0sLHc3fPf6guCewiQCmj7mr_l6PV9NGPA0ii-CEc0YD3nCosvfehpfBzfe7wB4ljEYBZ_v6FE2qibOkqWrjG-NIlvZYO06j2StatTd3tiKrKSVFR7QtmRr2prkbkOk1WTRHaQNV1LVxiLJbYtNKRXeBlel3Hu8O-Vx8PH8tJkvwuXbSz6fLUPFMmhDVtAoKUDr_kAdpUVBZcQgYnEyTaYoESDlECuMECTTGqnSXGdxkZZTWRa8ZOPgYZhbyT2KovP9Fb4P3lR16yvZeS9mSQwcIOPQ45MBV43zvsFSfDXmIJtvQUEcPYqTRzF47BvI0IDKWeP_8JTTXiNN0x55GhBTGbFzXWP7h8XRqnBWnK2Ks9X_F1HOfgBh8Yi2</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Wang, Lanjing</creator><creator>J, Alfred Daniel</creator><creator>Vadivel, Thanjai</creator><general>IGI Global</general><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20220101</creationdate><title>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</title><author>Wang, Lanjing ; J, Alfred Daniel ; Vadivel, Thanjai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-3b147b0dd935d48bb1a4304367272eae008506ce4e0a3dde1cd5d96b8f2afb5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Middleware</topic><topic>Warehouse stores</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Lanjing</creatorcontrib><creatorcontrib>J, Alfred Daniel</creatorcontrib><creatorcontrib>Vadivel, Thanjai</creatorcontrib><collection>ECONIS</collection><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of information systems and supply chain management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Lanjing</au><au>J, Alfred Daniel</au><au>Vadivel, Thanjai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface</atitle><jtitle>International journal of information systems and supply chain management</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1935-5726</issn><eissn>1935-5734</eissn><abstract>The automated deployment of the internet of things (IoT) and the human-machine interface provides the best advancement for dispersed warehouse scheduling management (WSM). In this paper, superior data systematic move toward warehouse scheduling management (WSM) has been suggested using the computational method to allow smart logistics. Furthermore, this paper introduces the human-machine interface framework (HMI) using IoT for collaborative warehouse order fulfillment. It consists of a layer of physical equipment, an ambient middleware network, a framework of multi-agents, and source planning. This approach is chosen to enhance the reaction capabilities of decentralized warehouse scheduling management in a dynamic environment. The simulation outcome has been performed, and the suggested method realizes a high product delivery ratio (96.5%), operational cost (94.9%), demand prediction ratio (96.5%), accuracy ratio (98.4%), and performance ratio (97.2%).</abstract><pub>IGI Global</pub><doi>10.4018/IJISSCM.305846</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1935-5726
ispartof International journal of information systems and supply chain management, 2022-01, Vol.15 (4), p.1-15
issn 1935-5726
1935-5734
language eng
recordid cdi_crossref_primary_10_4018_IJISSCM_305846
source ProQuest Central (Alumni Edition); ProQuest Central Korea; ProQuest Central UK/Ireland; Alma/SFX Local Collection; ProQuest Central
subjects Middleware
Warehouse stores
title Research on Logistic Warehouse Scheduling Management With IoT and Human-Machine Interface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T06%3A43%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_econi&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Research%20on%20Logistic%20Warehouse%20Scheduling%20Management%20With%20IoT%20and%20Human-Machine%20Interface&rft.jtitle=International%20journal%20of%20information%20systems%20and%20supply%20chain%20management&rft.au=Wang,%20Lanjing&rft.date=2022-01-01&rft.volume=15&rft.issue=4&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1935-5726&rft.eissn=1935-5734&rft_id=info:doi/10.4018/IJISSCM.305846&rft_dat=%3Cgale_econi%3EA760500950%3C/gale_econi%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A760500950&rfr_iscdi=true