Visual Analysis of a Large and Noisy Dataset

Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be eviden...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of conceptual structures and smart applications 2015-07, Vol.3 (2), p.12-24
Hauptverfasser: Orphanides, Constantinos, Nwagwu, Honour Chika
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24
container_issue 2
container_start_page 12
container_title International journal of conceptual structures and smart applications
container_volume 3
creator Orphanides, Constantinos
Nwagwu, Honour Chika
description Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis (FCA) tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data (IID) when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.
doi_str_mv 10.4018/IJCSSA.2015070102
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJCSSA_2015070102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759972533</galeid><sourcerecordid>A759972533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1773-123f5e3f656f7f39d7a889caf8ed05e98e411f9c8c222edbdb8087b1a61670a03</originalsourceid><addsrcrecordid>eNp1kDtPw0AMgE8IJKrSH8CWFakp92juMUYFSlEFQ4H15CR34aqQVHEz9N8TCBUD4MH28NmWP0IuGZ3NKdPXq4fFZpPOOGUJVZRRfkJGnEkZK0Hl6bHnhp-TCeKW9mGM4FyOyPQ1YAdVlNZQHTBg1PgIojW0pYugLqLHJuAhuoE9oNtfkDMPFbrJdx2Tl7vb58V9vH5arhbpOs6ZUiJmXPjECS8T6ZUXplCgtcnBa1fQxBnt5ox5k-ucc-6KrMg01SpjIJlUFKgYk-mwt4TK2azDUDvsE4bybY8ldIg2VYkxiidC9Dgb8LxtEFvn7a4N79AeLKP2U5AdBNkfQf3M1TATymC3Tdf2_-Nvzu4K37PLP1io7FGabbwF-yXNQv3_UfEBOAJ7eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Visual Analysis of a Large and Noisy Dataset</title><source>Alma/SFX Local Collection</source><creator>Orphanides, Constantinos ; Nwagwu, Honour Chika</creator><creatorcontrib>Orphanides, Constantinos ; Nwagwu, Honour Chika</creatorcontrib><description>Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis (FCA) tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data (IID) when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.</description><identifier>ISSN: 2166-7292</identifier><identifier>EISSN: 2166-7306</identifier><identifier>DOI: 10.4018/IJCSSA.2015070102</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Analysis ; Information management</subject><ispartof>International journal of conceptual structures and smart applications, 2015-07, Vol.3 (2), p.12-24</ispartof><rights>COPYRIGHT 2015 IGI Global</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Orphanides, Constantinos</creatorcontrib><creatorcontrib>Nwagwu, Honour Chika</creatorcontrib><title>Visual Analysis of a Large and Noisy Dataset</title><title>International journal of conceptual structures and smart applications</title><description>Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis (FCA) tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data (IID) when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.</description><subject>Analysis</subject><subject>Information management</subject><issn>2166-7292</issn><issn>2166-7306</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kDtPw0AMgE8IJKrSH8CWFakp92juMUYFSlEFQ4H15CR34aqQVHEz9N8TCBUD4MH28NmWP0IuGZ3NKdPXq4fFZpPOOGUJVZRRfkJGnEkZK0Hl6bHnhp-TCeKW9mGM4FyOyPQ1YAdVlNZQHTBg1PgIojW0pYugLqLHJuAhuoE9oNtfkDMPFbrJdx2Tl7vb58V9vH5arhbpOs6ZUiJmXPjECS8T6ZUXplCgtcnBa1fQxBnt5ox5k-ucc-6KrMg01SpjIJlUFKgYk-mwt4TK2azDUDvsE4bybY8ldIg2VYkxiidC9Dgb8LxtEFvn7a4N79AeLKP2U5AdBNkfQf3M1TATymC3Tdf2_-Nvzu4K37PLP1io7FGabbwF-yXNQv3_UfEBOAJ7eQ</recordid><startdate>20150701</startdate><enddate>20150701</enddate><creator>Orphanides, Constantinos</creator><creator>Nwagwu, Honour Chika</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20150701</creationdate><title>Visual Analysis of a Large and Noisy Dataset</title><author>Orphanides, Constantinos ; Nwagwu, Honour Chika</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1773-123f5e3f656f7f39d7a889caf8ed05e98e411f9c8c222edbdb8087b1a61670a03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Analysis</topic><topic>Information management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Orphanides, Constantinos</creatorcontrib><creatorcontrib>Nwagwu, Honour Chika</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of conceptual structures and smart applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Orphanides, Constantinos</au><au>Nwagwu, Honour Chika</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Visual Analysis of a Large and Noisy Dataset</atitle><jtitle>International journal of conceptual structures and smart applications</jtitle><date>2015-07-01</date><risdate>2015</risdate><volume>3</volume><issue>2</issue><spage>12</spage><epage>24</epage><pages>12-24</pages><issn>2166-7292</issn><eissn>2166-7306</eissn><abstract>Visual analysis has witnessed a growing acceptance as a method of scientific inquiry in the research community. It is used in qualitative and mixed research methods. Even so, visual data analysis is likely to produce biased results when used in analysing a large and noisy dataset. This can be evident when a data analyst is not able to holistically explore, all the values associated with the objects of interest in a dataset. Consequently, the data analyst may assess inconsistent data as consistent when contradiction associated with the data is not visualised. This work identifies incomplete analysis as a challenge in the visual data analysis of a large and noisy dataset. It considers Formal Concept Analysis (FCA) tools and techniques and prescribes the mining and visualisation of Incomplete or Inconsistent Data (IID) when dealing with a large and noisy dataset. It presents an automated approach for transforming IID from a noisy context whose objects are associated with mutually exclusive many-valued attributes, to a formal context.</abstract><pub>IGI Global</pub><doi>10.4018/IJCSSA.2015070102</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2166-7292
ispartof International journal of conceptual structures and smart applications, 2015-07, Vol.3 (2), p.12-24
issn 2166-7292
2166-7306
language eng
recordid cdi_crossref_primary_10_4018_IJCSSA_2015070102
source Alma/SFX Local Collection
subjects Analysis
Information management
title Visual Analysis of a Large and Noisy Dataset
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T23%3A47%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Visual%20Analysis%20of%20a%20Large%20and%20Noisy%20Dataset&rft.jtitle=International%20journal%20of%20conceptual%20structures%20and%20smart%20applications&rft.au=Orphanides,%20Constantinos&rft.date=2015-07-01&rft.volume=3&rft.issue=2&rft.spage=12&rft.epage=24&rft.pages=12-24&rft.issn=2166-7292&rft.eissn=2166-7306&rft_id=info:doi/10.4018/IJCSSA.2015070102&rft_dat=%3Cgale_cross%3EA759972533%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759972533&rfr_iscdi=true