Intelligent Modeling of Risk Factors Contributing to Runway Incursion

The purpose of this paper is to validate the use of an intelligent neural network model to identify the risk factors contributing to runway incursions. The study utilized multi-dataset fusion and a neural network model to identify risk factors. Historical runway safety data, weather data, and data o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of aviation systems, operations and training operations and training, 2014-07, Vol.1 (2), p.23-34
Hauptverfasser: Replogle, Antonia, Bischoff, John E, Willy, Christopher J, Roncace, Robert A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 2
container_start_page 23
container_title International journal of aviation systems, operations and training
container_volume 1
creator Replogle, Antonia
Bischoff, John E
Willy, Christopher J
Roncace, Robert A
description The purpose of this paper is to validate the use of an intelligent neural network model to identify the risk factors contributing to runway incursions. The study utilized multi-dataset fusion and a neural network model to identify risk factors. Historical runway safety data, weather data, and data on the physical characteristics of airports were obtained from multiple publicly available government websites. The results of the analysis showed that a neural network model was able to determine the factors most strongly associated with runway incursions, without the need for subjective weighting by safety experts used in most previous runway incursion studies. The Federal Aviation Administration could use a cyber-physical system, which combines human and computer processes, to analyze the runway incursion factors identified in the present study to determine which aspects of runway safety could be improved to reduce future incursions and save lives.
doi_str_mv 10.4018/IJASOT.2014070102
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJASOT_2014070102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759699697</galeid><sourcerecordid>A759699697</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1771-5454bddc20d0ff54c60b63d3b0cc8fb890e26318e71298ad40b56cd32d8f86c43</originalsourceid><addsrcrecordid>eNp1kN1LwzAQwIsoOHR_gG99Fey8NEk_HsfYZmUymPM5tPmomTUZSYvsv7ejUx9UOO4O7ncJ9wuCGwQTAii7Lx6nz-vtJAZEIAUE8VkwijEmEcWInH_3kFwGY-93AIAwoUDxKJgXppVNo2tp2vDJCtloU4dWhRvt38JFyVvrfDizpnW66trjsLXhpjMf5SEsDO-c19ZcBxeqbLwcn-pV8LKYb2cP0Wq9LGbTVcRRmqKIEkoqIXgMApSihCdQJVjgCjjPVJXlIOMEo0ymKM6zUhCoaMIFjkWmsoQTfBXcDe_WZSNZ1XltpO-T1_Vr6-uy855NU5oneR9pj6MB585676Rie6ffS3dgCNjRHBvMsR9z_c7tsKNrzXa2c6Y_6DfH9kL17PIP9mSTfdlkVrGjzf8_RfgTlZ-GDg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Intelligent Modeling of Risk Factors Contributing to Runway Incursion</title><source>Alma/SFX Local Collection</source><creator>Replogle, Antonia ; Bischoff, John E ; Willy, Christopher J ; Roncace, Robert A</creator><creatorcontrib>Replogle, Antonia ; Bischoff, John E ; Willy, Christopher J ; Roncace, Robert A</creatorcontrib><description>The purpose of this paper is to validate the use of an intelligent neural network model to identify the risk factors contributing to runway incursions. The study utilized multi-dataset fusion and a neural network model to identify risk factors. Historical runway safety data, weather data, and data on the physical characteristics of airports were obtained from multiple publicly available government websites. The results of the analysis showed that a neural network model was able to determine the factors most strongly associated with runway incursions, without the need for subjective weighting by safety experts used in most previous runway incursion studies. The Federal Aviation Administration could use a cyber-physical system, which combines human and computer processes, to analyze the runway incursion factors identified in the present study to determine which aspects of runway safety could be improved to reduce future incursions and save lives.</description><identifier>ISSN: 2334-5306</identifier><identifier>EISSN: 2334-5314</identifier><identifier>DOI: 10.4018/IJASOT.2014070102</identifier><language>eng</language><publisher>IGI Global</publisher><subject>Neural networks</subject><ispartof>International journal of aviation systems, operations and training, 2014-07, Vol.1 (2), p.23-34</ispartof><rights>COPYRIGHT 2014 IGI Global</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Replogle, Antonia</creatorcontrib><creatorcontrib>Bischoff, John E</creatorcontrib><creatorcontrib>Willy, Christopher J</creatorcontrib><creatorcontrib>Roncace, Robert A</creatorcontrib><title>Intelligent Modeling of Risk Factors Contributing to Runway Incursion</title><title>International journal of aviation systems, operations and training</title><description>The purpose of this paper is to validate the use of an intelligent neural network model to identify the risk factors contributing to runway incursions. The study utilized multi-dataset fusion and a neural network model to identify risk factors. Historical runway safety data, weather data, and data on the physical characteristics of airports were obtained from multiple publicly available government websites. The results of the analysis showed that a neural network model was able to determine the factors most strongly associated with runway incursions, without the need for subjective weighting by safety experts used in most previous runway incursion studies. The Federal Aviation Administration could use a cyber-physical system, which combines human and computer processes, to analyze the runway incursion factors identified in the present study to determine which aspects of runway safety could be improved to reduce future incursions and save lives.</description><subject>Neural networks</subject><issn>2334-5306</issn><issn>2334-5314</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><recordid>eNp1kN1LwzAQwIsoOHR_gG99Fey8NEk_HsfYZmUymPM5tPmomTUZSYvsv7ejUx9UOO4O7ncJ9wuCGwQTAii7Lx6nz-vtJAZEIAUE8VkwijEmEcWInH_3kFwGY-93AIAwoUDxKJgXppVNo2tp2vDJCtloU4dWhRvt38JFyVvrfDizpnW66trjsLXhpjMf5SEsDO-c19ZcBxeqbLwcn-pV8LKYb2cP0Wq9LGbTVcRRmqKIEkoqIXgMApSihCdQJVjgCjjPVJXlIOMEo0ymKM6zUhCoaMIFjkWmsoQTfBXcDe_WZSNZ1XltpO-T1_Vr6-uy855NU5oneR9pj6MB585676Rie6ffS3dgCNjRHBvMsR9z_c7tsKNrzXa2c6Y_6DfH9kL17PIP9mSTfdlkVrGjzf8_RfgTlZ-GDg</recordid><startdate>20140701</startdate><enddate>20140701</enddate><creator>Replogle, Antonia</creator><creator>Bischoff, John E</creator><creator>Willy, Christopher J</creator><creator>Roncace, Robert A</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope></search><sort><creationdate>20140701</creationdate><title>Intelligent Modeling of Risk Factors Contributing to Runway Incursion</title><author>Replogle, Antonia ; Bischoff, John E ; Willy, Christopher J ; Roncace, Robert A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1771-5454bddc20d0ff54c60b63d3b0cc8fb890e26318e71298ad40b56cd32d8f86c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Neural networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Replogle, Antonia</creatorcontrib><creatorcontrib>Bischoff, John E</creatorcontrib><creatorcontrib>Willy, Christopher J</creatorcontrib><creatorcontrib>Roncace, Robert A</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><jtitle>International journal of aviation systems, operations and training</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Replogle, Antonia</au><au>Bischoff, John E</au><au>Willy, Christopher J</au><au>Roncace, Robert A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Intelligent Modeling of Risk Factors Contributing to Runway Incursion</atitle><jtitle>International journal of aviation systems, operations and training</jtitle><date>2014-07-01</date><risdate>2014</risdate><volume>1</volume><issue>2</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>2334-5306</issn><eissn>2334-5314</eissn><abstract>The purpose of this paper is to validate the use of an intelligent neural network model to identify the risk factors contributing to runway incursions. The study utilized multi-dataset fusion and a neural network model to identify risk factors. Historical runway safety data, weather data, and data on the physical characteristics of airports were obtained from multiple publicly available government websites. The results of the analysis showed that a neural network model was able to determine the factors most strongly associated with runway incursions, without the need for subjective weighting by safety experts used in most previous runway incursion studies. The Federal Aviation Administration could use a cyber-physical system, which combines human and computer processes, to analyze the runway incursion factors identified in the present study to determine which aspects of runway safety could be improved to reduce future incursions and save lives.</abstract><pub>IGI Global</pub><doi>10.4018/IJASOT.2014070102</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2334-5306
ispartof International journal of aviation systems, operations and training, 2014-07, Vol.1 (2), p.23-34
issn 2334-5306
2334-5314
language eng
recordid cdi_crossref_primary_10_4018_IJASOT_2014070102
source Alma/SFX Local Collection
subjects Neural networks
title Intelligent Modeling of Risk Factors Contributing to Runway Incursion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T19%3A01%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Intelligent%20Modeling%20of%20Risk%20Factors%20Contributing%20to%20Runway%20Incursion&rft.jtitle=International%20journal%20of%20aviation%20systems,%20operations%20and%20training&rft.au=Replogle,%20Antonia&rft.date=2014-07-01&rft.volume=1&rft.issue=2&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=2334-5306&rft.eissn=2334-5314&rft_id=info:doi/10.4018/IJASOT.2014070102&rft_dat=%3Cgale_cross%3EA759699697%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A759699697&rfr_iscdi=true