A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems
This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a...
Gespeichert in:
Veröffentlicht in: | International journal of applied metaheuristic computing 2021-07, Vol.12 (3), p.195-211 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 211 |
---|---|
container_issue | 3 |
container_start_page | 195 |
container_title | International journal of applied metaheuristic computing |
container_volume | 12 |
creator | Arık, Oğuzhan Ahmet Toksarı, Mehmet Duran |
description | This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a genetic algorithm, a well-known and strong metaheuristic algorithm, for the problem and we generated some test problems with learning and deterioration effects. The proposed genetic algorithm is compared with another existing metaheuristic for the problem. Experimental results show that the proposed genetic algorithm yield good solutions in very short execution times and outperforms the existing metaheuristic for the problem. |
doi_str_mv | 10.4018/IJAMC.2021070109 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_4018_IJAMC_2021070109</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A759696975</galeid><sourcerecordid>A759696975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-be1fc7b18531384403cedd70117f1af8b4054edc8a8bdc5e0553279f1dafa153</originalsourceid><addsrcrecordid>eNqNUU9v2yActaZVWtXmviPSrnMLxgy8m5V2aatUi9T0jDD-4VA5kAE-7AP2e5U0_XNZpYEECN57PL1XFF8JPqsxEefXN-3t_KzCFcEcE9x8Ko5JU_NSVA35_HYW9Esxi_EB58FqzjE7Lh5btAAHyWrUjoMPNm22qN3tgld6g5JHKxXUOMKIbvOFdYDu9Ab6abRuQKvguxG2Ed27HgK6NAZ0isgbtPLRJutdeQE7yI8uoSWo4PYs5Xq0zEoqoAtIEKwPao_9-Q8n_2ngtDgyaowwe9lPivWvy_X8qlz-XlzP22WpacVS2QExmndEMEqoqGtMNfR9ToxwQ5QRXZ1zgV4LJbpeM8CM0Yo3hvTKKMLoSfHtIJvj-TNBTPLBT8HlH2XVUCI4o1xk1PcDalAjyG6K2XTMS7TDJsVBTTHKlrPmR558L4oPcB18jAGM3AW7VeGvJFju25XP7cr3djNlcaDYwb5beM5OvmUnX1v8UIdU9AmK8rK6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2931875378</pqid></control><display><type>article</type><title>A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems</title><source>ProQuest Central</source><creator>Arık, Oğuzhan Ahmet ; Toksarı, Mehmet Duran</creator><creatorcontrib>Arık, Oğuzhan Ahmet ; Toksarı, Mehmet Duran</creatorcontrib><description>This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a genetic algorithm, a well-known and strong metaheuristic algorithm, for the problem and we generated some test problems with learning and deterioration effects. The proposed genetic algorithm is compared with another existing metaheuristic for the problem. Experimental results show that the proposed genetic algorithm yield good solutions in very short execution times and outperforms the existing metaheuristic for the problem.</description><identifier>ISSN: 1947-8283</identifier><identifier>EISSN: 1947-8291</identifier><identifier>DOI: 10.4018/IJAMC.2021070109</identifier><language>eng</language><publisher>Hershey: IGI Global</publisher><subject>Algorithms ; Analysis ; Employment ; Expected values ; Genetic algorithms ; Heuristic methods ; Linear programming ; Mathematical programming ; Scheduling</subject><ispartof>International journal of applied metaheuristic computing, 2021-07, Vol.12 (3), p.195-211</ispartof><rights>COPYRIGHT 2021 IGI Global</rights><rights>Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-7088-2104</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2931875378?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,776,780,21367,27901,27902,33721,43781</link.rule.ids></links><search><creatorcontrib>Arık, Oğuzhan Ahmet</creatorcontrib><creatorcontrib>Toksarı, Mehmet Duran</creatorcontrib><title>A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems</title><title>International journal of applied metaheuristic computing</title><description>This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a genetic algorithm, a well-known and strong metaheuristic algorithm, for the problem and we generated some test problems with learning and deterioration effects. The proposed genetic algorithm is compared with another existing metaheuristic for the problem. Experimental results show that the proposed genetic algorithm yield good solutions in very short execution times and outperforms the existing metaheuristic for the problem.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Employment</subject><subject>Expected values</subject><subject>Genetic algorithms</subject><subject>Heuristic methods</subject><subject>Linear programming</subject><subject>Mathematical programming</subject><subject>Scheduling</subject><issn>1947-8283</issn><issn>1947-8291</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>N95</sourceid><sourceid>BENPR</sourceid><recordid>eNqNUU9v2yActaZVWtXmviPSrnMLxgy8m5V2aatUi9T0jDD-4VA5kAE-7AP2e5U0_XNZpYEECN57PL1XFF8JPqsxEefXN-3t_KzCFcEcE9x8Ko5JU_NSVA35_HYW9Esxi_EB58FqzjE7Lh5btAAHyWrUjoMPNm22qN3tgld6g5JHKxXUOMKIbvOFdYDu9Ab6abRuQKvguxG2Ed27HgK6NAZ0isgbtPLRJutdeQE7yI8uoSWo4PYs5Xq0zEoqoAtIEKwPao_9-Q8n_2ngtDgyaowwe9lPivWvy_X8qlz-XlzP22WpacVS2QExmndEMEqoqGtMNfR9ToxwQ5QRXZ1zgV4LJbpeM8CM0Yo3hvTKKMLoSfHtIJvj-TNBTPLBT8HlH2XVUCI4o1xk1PcDalAjyG6K2XTMS7TDJsVBTTHKlrPmR558L4oPcB18jAGM3AW7VeGvJFju25XP7cr3djNlcaDYwb5beM5OvmUnX1v8UIdU9AmK8rK6</recordid><startdate>20210701</startdate><enddate>20210701</enddate><creator>Arık, Oğuzhan Ahmet</creator><creator>Toksarı, Mehmet Duran</creator><general>IGI Global</general><scope>AAYXX</scope><scope>CITATION</scope><scope>N95</scope><scope>7SC</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-7088-2104</orcidid></search><sort><creationdate>20210701</creationdate><title>A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems</title><author>Arık, Oğuzhan Ahmet ; Toksarı, Mehmet Duran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-be1fc7b18531384403cedd70117f1af8b4054edc8a8bdc5e0553279f1dafa153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Employment</topic><topic>Expected values</topic><topic>Genetic algorithms</topic><topic>Heuristic methods</topic><topic>Linear programming</topic><topic>Mathematical programming</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arık, Oğuzhan Ahmet</creatorcontrib><creatorcontrib>Toksarı, Mehmet Duran</creatorcontrib><collection>CrossRef</collection><collection>Gale Business: Insights</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>International journal of applied metaheuristic computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arık, Oğuzhan Ahmet</au><au>Toksarı, Mehmet Duran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems</atitle><jtitle>International journal of applied metaheuristic computing</jtitle><date>2021-07-01</date><risdate>2021</risdate><volume>12</volume><issue>3</issue><spage>195</spage><epage>211</epage><pages>195-211</pages><issn>1947-8283</issn><eissn>1947-8291</eissn><abstract>This paper investigates parallel machine scheduling problems where the objectives are to minimize total completion times under effects of learning and deterioration. The investigated problem is in NP-hard class and solution time for finding optimal solution is extremely high. The authors suggested a genetic algorithm, a well-known and strong metaheuristic algorithm, for the problem and we generated some test problems with learning and deterioration effects. The proposed genetic algorithm is compared with another existing metaheuristic for the problem. Experimental results show that the proposed genetic algorithm yield good solutions in very short execution times and outperforms the existing metaheuristic for the problem.</abstract><cop>Hershey</cop><pub>IGI Global</pub><doi>10.4018/IJAMC.2021070109</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-7088-2104</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1947-8283 |
ispartof | International journal of applied metaheuristic computing, 2021-07, Vol.12 (3), p.195-211 |
issn | 1947-8283 1947-8291 |
language | eng |
recordid | cdi_crossref_primary_10_4018_IJAMC_2021070109 |
source | ProQuest Central |
subjects | Algorithms Analysis Employment Expected values Genetic algorithms Heuristic methods Linear programming Mathematical programming Scheduling |
title | A Genetic Algorithm Approach to Parallel Machine Scheduling Problems Under Effects of Position-Dependent Learning and Linear Deterioration: Genetic Algorithm to Parallel Machine Scheduling Problems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A03%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genetic%20Algorithm%20Approach%20to%20Parallel%20Machine%20Scheduling%20Problems%20Under%20Effects%20of%20Position-Dependent%20Learning%20and%20Linear%20Deterioration:%20Genetic%20Algorithm%20to%20Parallel%20Machine%20Scheduling%20Problems&rft.jtitle=International%20journal%20of%20applied%20metaheuristic%20computing&rft.au=Ar%C4%B1k,%20O%C4%9Fuzhan%20Ahmet&rft.date=2021-07-01&rft.volume=12&rft.issue=3&rft.spage=195&rft.epage=211&rft.pages=195-211&rft.issn=1947-8283&rft.eissn=1947-8291&rft_id=info:doi/10.4018/IJAMC.2021070109&rft_dat=%3Cgale_cross%3EA759696975%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2931875378&rft_id=info:pmid/&rft_galeid=A759696975&rfr_iscdi=true |