AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments
Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environment...
Gespeichert in:
Veröffentlicht in: | International Journal of Online and Biomedical Engineering 2024-11, Vol.20 (14), p.22-37 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 37 |
---|---|
container_issue | 14 |
container_start_page | 22 |
container_title | International Journal of Online and Biomedical Engineering |
container_volume | 20 |
creator | Shkurti, Lamir Selimi, Mennan |
description | Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints. |
doi_str_mv | 10.3991/ijoe.v20i14.50559 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v20i14_50559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v20i14_50559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c859-7452a0781b7815732487cca3a98070310f4d8c2c6a9f3aeb2bb47eb78b8d64663</originalsourceid><addsrcrecordid>eNpNkM1Kw0AcxBdRsNQ-gLd9gdT9_vBWQquFiCCFHsNm849uaTdlNwZ8e1ur4GGYGRjm8EPonpI5t5Y-hF0P85GRQMVcEintFZowxVRhhOXX__ItmuW8I4QwSRlVZIK2i9YdhzDCC-SPR_zX8ApaSG4AXIFLMcR33PUJv0HuP5OHouxjHpILEVq8DQn2kDNexjGkPh4gDvkO3XRun2H261O0WS035XNRvT6ty0VVeCNtoYVkjmhDm5Ok5kwY7b3jzhqiCaekE63xzCtnO-6gYU0jNJzGjWmVUIpPEb3c-tTnnKCrjykcXPqqKanPbOozm_rCpv5hw78B7YxZpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><source>Alma/SFX Local Collection</source><creator>Shkurti, Lamir ; Selimi, Mennan</creator><creatorcontrib>Shkurti, Lamir ; Selimi, Mennan</creatorcontrib><description>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v20i14.50559</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2024-11, Vol.20 (14), p.22-37</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-1074-0398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shkurti, Lamir</creatorcontrib><creatorcontrib>Selimi, Mennan</creatorcontrib><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><title>International Journal of Online and Biomedical Engineering</title><description>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AcxBdRsNQ-gLd9gdT9_vBWQquFiCCFHsNm849uaTdlNwZ8e1ur4GGYGRjm8EPonpI5t5Y-hF0P85GRQMVcEintFZowxVRhhOXX__ItmuW8I4QwSRlVZIK2i9YdhzDCC-SPR_zX8ApaSG4AXIFLMcR33PUJv0HuP5OHouxjHpILEVq8DQn2kDNexjGkPh4gDvkO3XRun2H261O0WS035XNRvT6ty0VVeCNtoYVkjmhDm5Ok5kwY7b3jzhqiCaekE63xzCtnO-6gYU0jNJzGjWmVUIpPEb3c-tTnnKCrjykcXPqqKanPbOozm_rCpv5hw78B7YxZpw</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Shkurti, Lamir</creator><creator>Selimi, Mennan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-1074-0398</orcidid></search><sort><creationdate>20241114</creationdate><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><author>Shkurti, Lamir ; Selimi, Mennan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c859-7452a0781b7815732487cca3a98070310f4d8c2c6a9f3aeb2bb47eb78b8d64663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shkurti, Lamir</creatorcontrib><creatorcontrib>Selimi, Mennan</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shkurti, Lamir</au><au>Selimi, Mennan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>20</volume><issue>14</issue><spage>22</spage><epage>37</epage><pages>22-37</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</abstract><doi>10.3991/ijoe.v20i14.50559</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0002-1074-0398</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2626-8493 |
ispartof | International Journal of Online and Biomedical Engineering, 2024-11, Vol.20 (14), p.22-37 |
issn | 2626-8493 2626-8493 |
language | eng |
recordid | cdi_crossref_primary_10_3991_ijoe_v20i14_50559 |
source | Alma/SFX Local Collection |
title | AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaptiveMesh:%20Adaptive%20Federate%20Learning%20for%20Resource-Constrained%20Wireless%20Environments&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Shkurti,%20Lamir&rft.date=2024-11-14&rft.volume=20&rft.issue=14&rft.spage=22&rft.epage=37&rft.pages=22-37&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v20i14.50559&rft_dat=%3Ccrossref%3E10_3991_ijoe_v20i14_50559%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |