AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments

Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Online and Biomedical Engineering 2024-11, Vol.20 (14), p.22-37
Hauptverfasser: Shkurti, Lamir, Selimi, Mennan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 37
container_issue 14
container_start_page 22
container_title International Journal of Online and Biomedical Engineering
container_volume 20
creator Shkurti, Lamir
Selimi, Mennan
description Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.
doi_str_mv 10.3991/ijoe.v20i14.50559
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v20i14_50559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v20i14_50559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c859-7452a0781b7815732487cca3a98070310f4d8c2c6a9f3aeb2bb47eb78b8d64663</originalsourceid><addsrcrecordid>eNpNkM1Kw0AcxBdRsNQ-gLd9gdT9_vBWQquFiCCFHsNm849uaTdlNwZ8e1ur4GGYGRjm8EPonpI5t5Y-hF0P85GRQMVcEintFZowxVRhhOXX__ItmuW8I4QwSRlVZIK2i9YdhzDCC-SPR_zX8ApaSG4AXIFLMcR33PUJv0HuP5OHouxjHpILEVq8DQn2kDNexjGkPh4gDvkO3XRun2H261O0WS035XNRvT6ty0VVeCNtoYVkjmhDm5Ok5kwY7b3jzhqiCaekE63xzCtnO-6gYU0jNJzGjWmVUIpPEb3c-tTnnKCrjykcXPqqKanPbOozm_rCpv5hw78B7YxZpw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><source>Alma/SFX Local Collection</source><creator>Shkurti, Lamir ; Selimi, Mennan</creator><creatorcontrib>Shkurti, Lamir ; Selimi, Mennan</creatorcontrib><description>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v20i14.50559</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2024-11, Vol.20 (14), p.22-37</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0002-1074-0398</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Shkurti, Lamir</creatorcontrib><creatorcontrib>Selimi, Mennan</creatorcontrib><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><title>International Journal of Online and Biomedical Engineering</title><description>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkM1Kw0AcxBdRsNQ-gLd9gdT9_vBWQquFiCCFHsNm849uaTdlNwZ8e1ur4GGYGRjm8EPonpI5t5Y-hF0P85GRQMVcEintFZowxVRhhOXX__ItmuW8I4QwSRlVZIK2i9YdhzDCC-SPR_zX8ApaSG4AXIFLMcR33PUJv0HuP5OHouxjHpILEVq8DQn2kDNexjGkPh4gDvkO3XRun2H261O0WS035XNRvT6ty0VVeCNtoYVkjmhDm5Ok5kwY7b3jzhqiCaekE63xzCtnO-6gYU0jNJzGjWmVUIpPEb3c-tTnnKCrjykcXPqqKanPbOozm_rCpv5hw78B7YxZpw</recordid><startdate>20241114</startdate><enddate>20241114</enddate><creator>Shkurti, Lamir</creator><creator>Selimi, Mennan</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0002-1074-0398</orcidid></search><sort><creationdate>20241114</creationdate><title>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</title><author>Shkurti, Lamir ; Selimi, Mennan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c859-7452a0781b7815732487cca3a98070310f4d8c2c6a9f3aeb2bb47eb78b8d64663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shkurti, Lamir</creatorcontrib><creatorcontrib>Selimi, Mennan</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shkurti, Lamir</au><au>Selimi, Mennan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2024-11-14</date><risdate>2024</risdate><volume>20</volume><issue>14</issue><spage>22</spage><epage>37</epage><pages>22-37</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Federated learning (FL) presents a decentralized approach to model training, particularly beneficial in scenarios prioritizing data privacy, such as healthcare. This paper introduces AdaptiveMesh, an FL adaptive algorithm designed to optimize training efficiency in heterogeneous wireless environments. Through dynamic adjustment of training parameters based on client performance metrics, including central processing unit (CPU) utilization and accuracy trends, AdaptiveMesh aims to enhance model convergence and resource utilization. Experimental evaluations on heterogeneous client devices demonstrate the algorithm’s effectiveness in improving model accuracy, stability, and training efficiency. Results indicate a significant impact on CPU adaptation in preventing client overloading and mitigating overheating risks. Furthermore, the results of the one-way analysis of variance (ANOVA) and regression analysis highlight significant differences in CPU usage, accuracy, and epochs between devices with varying levels of hardware capabilities. These findings underscore the algorithm’s potential for practical deployment in real-world edge computing environments, addressing challenges posed by heterogeneous device capabilities and resource constraints.</abstract><doi>10.3991/ijoe.v20i14.50559</doi><tpages>16</tpages><orcidid>https://orcid.org/0009-0002-1074-0398</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2626-8493
ispartof International Journal of Online and Biomedical Engineering, 2024-11, Vol.20 (14), p.22-37
issn 2626-8493
2626-8493
language eng
recordid cdi_crossref_primary_10_3991_ijoe_v20i14_50559
source Alma/SFX Local Collection
title AdaptiveMesh: Adaptive Federate Learning for Resource-Constrained Wireless Environments
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T17%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=AdaptiveMesh:%20Adaptive%20Federate%20Learning%20for%20Resource-Constrained%20Wireless%20Environments&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Shkurti,%20Lamir&rft.date=2024-11-14&rft.volume=20&rft.issue=14&rft.spage=22&rft.epage=37&rft.pages=22-37&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v20i14.50559&rft_dat=%3Ccrossref%3E10_3991_ijoe_v20i14_50559%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true