e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases

Glaucoma is an eye disease that often has no symptoms until it is advanced. According to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading cause of permanent blindness globally and is expected to affect 111.8 million patients by 2040. Early detection of glaucoma is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Online and Biomedical Engineering 2024-07, Vol.20 (10), p.64-85
Hauptverfasser: Wiharto, Tri Harjoko, Wimas, Suryani, Esti
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 85
container_issue 10
container_start_page 64
container_title International Journal of Online and Biomedical Engineering
container_volume 20
creator Wiharto
Tri Harjoko, Wimas
Suryani, Esti
description Glaucoma is an eye disease that often has no symptoms until it is advanced. According to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading cause of permanent blindness globally and is expected to affect 111.8 million patients by 2040. Early detection of glaucoma is important to reduce the risk of permanent blindness. Detection is achieved by structural measurement of early thinning of the retinal nerve fiber layer (RNFL). The RNFL is the portion of the retina located outside the optic nerve head (ONH) and can be observed in fundus images of the retina. Analysis of retinal fundus images can be performed with computer assistance using machine learning, especially deep learning. This study proposes a deep learning-based model, a convolutional neural network (CNN) using the EfficientNet architecture combined with long short-term memory (LSTM), for laucoma detection. Using ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets with k-fold cross-validation, the model achieved high performance on the ACRIMA dataset: accuracy 0.9799, loss 0.0596, precision 0.9802, sensitivity 0.9799, specificity 0.9771, and F1score 0.9799. This EfficientNet and LSTM combination (e-LSTM) outperformed previous studies, offering a promising alternative for evaluating retinal fundus images in glaucoma detection.
doi_str_mv 10.3991/ijoe.v20i10.48603
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v20i10_48603</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v20i10_48603</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-f4524cb6a46cca04f19e77794fd3c341a593eec9f07db9f962a8c63ea90a7383</originalsourceid><addsrcrecordid>eNpN0L1OwzAcBHALgURV-gBsfgEXf8WJ2VBbWqQEhmZgs1znb3DVxMgOSH17KGVgutMNN_wQumV0LrRmd2EfYf7FafgZZKWouEATrrgildTi8l-_RrOc95RSXjDOFJ2gVyD1tm3u8cr74AIM4zOM2A4druPwhrfvMY2khdTjBvqYjriJHRywjwkvYQQ3hjjg6PH6YD9d7C1ehgw2Q75BV94eMsz-corax1W72JD6Zf20eKiJY7wciZcFl26nrFTOWSo901CWpZa-E05IZgstAJz2tOx22mvFbeWUAKupLUUlpoidb12KOSfw5iOF3qajYdSccMwJx5xxzC-O-AYp1Vj3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases</title><source>Alma/SFX Local Collection</source><creator>Wiharto ; Tri Harjoko, Wimas ; Suryani, Esti</creator><creatorcontrib>Wiharto ; Tri Harjoko, Wimas ; Suryani, Esti</creatorcontrib><description>Glaucoma is an eye disease that often has no symptoms until it is advanced. According to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading cause of permanent blindness globally and is expected to affect 111.8 million patients by 2040. Early detection of glaucoma is important to reduce the risk of permanent blindness. Detection is achieved by structural measurement of early thinning of the retinal nerve fiber layer (RNFL). The RNFL is the portion of the retina located outside the optic nerve head (ONH) and can be observed in fundus images of the retina. Analysis of retinal fundus images can be performed with computer assistance using machine learning, especially deep learning. This study proposes a deep learning-based model, a convolutional neural network (CNN) using the EfficientNet architecture combined with long short-term memory (LSTM), for laucoma detection. Using ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets with k-fold cross-validation, the model achieved high performance on the ACRIMA dataset: accuracy 0.9799, loss 0.0596, precision 0.9802, sensitivity 0.9799, specificity 0.9771, and F1score 0.9799. This EfficientNet and LSTM combination (e-LSTM) outperformed previous studies, offering a promising alternative for evaluating retinal fundus images in glaucoma detection.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v20i10.48603</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2024-07, Vol.20 (10), p.64-85</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0009-0000-8670-8998</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wiharto</creatorcontrib><creatorcontrib>Tri Harjoko, Wimas</creatorcontrib><creatorcontrib>Suryani, Esti</creatorcontrib><title>e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases</title><title>International Journal of Online and Biomedical Engineering</title><description>Glaucoma is an eye disease that often has no symptoms until it is advanced. According to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading cause of permanent blindness globally and is expected to affect 111.8 million patients by 2040. Early detection of glaucoma is important to reduce the risk of permanent blindness. Detection is achieved by structural measurement of early thinning of the retinal nerve fiber layer (RNFL). The RNFL is the portion of the retina located outside the optic nerve head (ONH) and can be observed in fundus images of the retina. Analysis of retinal fundus images can be performed with computer assistance using machine learning, especially deep learning. This study proposes a deep learning-based model, a convolutional neural network (CNN) using the EfficientNet architecture combined with long short-term memory (LSTM), for laucoma detection. Using ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets with k-fold cross-validation, the model achieved high performance on the ACRIMA dataset: accuracy 0.9799, loss 0.0596, precision 0.9802, sensitivity 0.9799, specificity 0.9771, and F1score 0.9799. This EfficientNet and LSTM combination (e-LSTM) outperformed previous studies, offering a promising alternative for evaluating retinal fundus images in glaucoma detection.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpN0L1OwzAcBHALgURV-gBsfgEXf8WJ2VBbWqQEhmZgs1znb3DVxMgOSH17KGVgutMNN_wQumV0LrRmd2EfYf7FafgZZKWouEATrrgildTi8l-_RrOc95RSXjDOFJ2gVyD1tm3u8cr74AIM4zOM2A4druPwhrfvMY2khdTjBvqYjriJHRywjwkvYQQ3hjjg6PH6YD9d7C1ehgw2Q75BV94eMsz-corax1W72JD6Zf20eKiJY7wciZcFl26nrFTOWSo901CWpZa-E05IZgstAJz2tOx22mvFbeWUAKupLUUlpoidb12KOSfw5iOF3qajYdSccMwJx5xxzC-O-AYp1Vj3</recordid><startdate>20240716</startdate><enddate>20240716</enddate><creator>Wiharto</creator><creator>Tri Harjoko, Wimas</creator><creator>Suryani, Esti</creator><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0009-0000-8670-8998</orcidid></search><sort><creationdate>20240716</creationdate><title>e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases</title><author>Wiharto ; Tri Harjoko, Wimas ; Suryani, Esti</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-f4524cb6a46cca04f19e77794fd3c341a593eec9f07db9f962a8c63ea90a7383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wiharto</creatorcontrib><creatorcontrib>Tri Harjoko, Wimas</creatorcontrib><creatorcontrib>Suryani, Esti</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wiharto</au><au>Tri Harjoko, Wimas</au><au>Suryani, Esti</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2024-07-16</date><risdate>2024</risdate><volume>20</volume><issue>10</issue><spage>64</spage><epage>85</epage><pages>64-85</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Glaucoma is an eye disease that often has no symptoms until it is advanced. According to the World Health Organization (WHO), after cataracts, glaucoma is the second-leading cause of permanent blindness globally and is expected to affect 111.8 million patients by 2040. Early detection of glaucoma is important to reduce the risk of permanent blindness. Detection is achieved by structural measurement of early thinning of the retinal nerve fiber layer (RNFL). The RNFL is the portion of the retina located outside the optic nerve head (ONH) and can be observed in fundus images of the retina. Analysis of retinal fundus images can be performed with computer assistance using machine learning, especially deep learning. This study proposes a deep learning-based model, a convolutional neural network (CNN) using the EfficientNet architecture combined with long short-term memory (LSTM), for laucoma detection. Using ACRIMA, DRISHTI-GS, and RIM-ONE DL datasets with k-fold cross-validation, the model achieved high performance on the ACRIMA dataset: accuracy 0.9799, loss 0.0596, precision 0.9802, sensitivity 0.9799, specificity 0.9771, and F1score 0.9799. This EfficientNet and LSTM combination (e-LSTM) outperformed previous studies, offering a promising alternative for evaluating retinal fundus images in glaucoma detection.</abstract><doi>10.3991/ijoe.v20i10.48603</doi><tpages>22</tpages><orcidid>https://orcid.org/0009-0000-8670-8998</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2626-8493
ispartof International Journal of Online and Biomedical Engineering, 2024-07, Vol.20 (10), p.64-85
issn 2626-8493
2626-8493
language eng
recordid cdi_crossref_primary_10_3991_ijoe_v20i10_48603
source Alma/SFX Local Collection
title e-LSTM: EfficientNet and Long Short-Term Memory Model for Detection of Glaucoma Diseases
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T10%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=e-LSTM:%20EfficientNet%20and%20Long%20Short-Term%20Memory%20Model%20for%20Detection%20of%20Glaucoma%20Diseases&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Wiharto&rft.date=2024-07-16&rft.volume=20&rft.issue=10&rft.spage=64&rft.epage=85&rft.pages=64-85&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v20i10.48603&rft_dat=%3Ccrossref%3E10_3991_ijoe_v20i10_48603%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true