Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)

Real-time heart rate monitoring and early detection of heart abnormalities are vital to determine heart health before it worsens. To achieve this goal, this project uses the backpropagation neural network (BPNN) method including its capability to classify heartbeats into normal or abnormal by inputt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Online and Biomedical Engineering 2024-05, Vol.20 (8), p.83-99
Hauptverfasser: Suryani, Faizal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 99
container_issue 8
container_start_page 83
container_title International Journal of Online and Biomedical Engineering
container_volume 20
creator Suryani
Faizal
description Real-time heart rate monitoring and early detection of heart abnormalities are vital to determine heart health before it worsens. To achieve this goal, this project uses the backpropagation neural network (BPNN) method including its capability to classify heartbeats into normal or abnormal by inputting heartbeat values in BPM units derived from prototypes utilizing sensors like Sensor Easy Pulse and NodeMCU, along with considerations of age and sports activity. All data from sensors will be stored in Firebase. Then Firebase will connect to Android, and the normal and abnormal heart classification results will be displayed on the Android system. Simulation results successfully examined 40 people as a sample and provided information from real-time heart rate monitoring, age, and sports activity as input. This research seeks to contribute to improving health services at various public health service centers and independently in detecting heart health early.
doi_str_mv 10.3991/ijoe.v20i08.48071
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v20i08_48071</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v20i08_48071</sourcerecordid><originalsourceid>FETCH-LOGICAL-c127t-897ffc0e70f441a8c4f5b1e70db9890bebbb8b86ddc550582c8359233a7602523</originalsourceid><addsrcrecordid>eNpNkEtPAjEUhRujiQT5Ae661MVgH_Nol4APTHAgRtaTttySwkAnnaLh3zuAC1f33OSck5wPoXtKhlxK-uQ2HobfjDgihqkgBb1CPZazPBGp5Nf_9C0atO2GEMIyymhOesgtgo8-HhvAn6Dq6HaAnyGCic7v8dzikd77sFM1noIKEY9BRbxs3X6NPw6dvakBj5XZ4q6nUWt1jpVwCF2ihPjjwxY_jBdl-XiHbqyqWxj83T5avr58TabJbP72PhnNEkNZERMhC2sNgYLYNKVKmNRmmnbvSkshiQattdAiX61MlpFMMCN4Jhnnqsi7WYz3Eb30muDbNoCtmuB2KhwrSqoTruqEq7rgqs64-C8VhF9X</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)</title><source>Alma/SFX Local Collection</source><creator>Suryani ; Faizal</creator><creatorcontrib>Suryani ; Faizal</creatorcontrib><description>Real-time heart rate monitoring and early detection of heart abnormalities are vital to determine heart health before it worsens. To achieve this goal, this project uses the backpropagation neural network (BPNN) method including its capability to classify heartbeats into normal or abnormal by inputting heartbeat values in BPM units derived from prototypes utilizing sensors like Sensor Easy Pulse and NodeMCU, along with considerations of age and sports activity. All data from sensors will be stored in Firebase. Then Firebase will connect to Android, and the normal and abnormal heart classification results will be displayed on the Android system. Simulation results successfully examined 40 people as a sample and provided information from real-time heart rate monitoring, age, and sports activity as input. This research seeks to contribute to improving health services at various public health service centers and independently in detecting heart health early.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v20i08.48071</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2024-05, Vol.20 (8), p.83-99</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Suryani</creatorcontrib><creatorcontrib>Faizal</creatorcontrib><title>Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)</title><title>International Journal of Online and Biomedical Engineering</title><description>Real-time heart rate monitoring and early detection of heart abnormalities are vital to determine heart health before it worsens. To achieve this goal, this project uses the backpropagation neural network (BPNN) method including its capability to classify heartbeats into normal or abnormal by inputting heartbeat values in BPM units derived from prototypes utilizing sensors like Sensor Easy Pulse and NodeMCU, along with considerations of age and sports activity. All data from sensors will be stored in Firebase. Then Firebase will connect to Android, and the normal and abnormal heart classification results will be displayed on the Android system. Simulation results successfully examined 40 people as a sample and provided information from real-time heart rate monitoring, age, and sports activity as input. This research seeks to contribute to improving health services at various public health service centers and independently in detecting heart health early.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNpNkEtPAjEUhRujiQT5Ae661MVgH_Nol4APTHAgRtaTttySwkAnnaLh3zuAC1f33OSck5wPoXtKhlxK-uQ2HobfjDgihqkgBb1CPZazPBGp5Nf_9C0atO2GEMIyymhOesgtgo8-HhvAn6Dq6HaAnyGCic7v8dzikd77sFM1noIKEY9BRbxs3X6NPw6dvakBj5XZ4q6nUWt1jpVwCF2ihPjjwxY_jBdl-XiHbqyqWxj83T5avr58TabJbP72PhnNEkNZERMhC2sNgYLYNKVKmNRmmnbvSkshiQattdAiX61MlpFMMCN4Jhnnqsi7WYz3Eb30muDbNoCtmuB2KhwrSqoTruqEq7rgqs64-C8VhF9X</recordid><startdate>20240521</startdate><enddate>20240521</enddate><creator>Suryani</creator><creator>Faizal</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20240521</creationdate><title>Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)</title><author>Suryani ; Faizal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c127t-897ffc0e70f441a8c4f5b1e70db9890bebbb8b86ddc550582c8359233a7602523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suryani</creatorcontrib><creatorcontrib>Faizal</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suryani</au><au>Faizal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2024-05-21</date><risdate>2024</risdate><volume>20</volume><issue>8</issue><spage>83</spage><epage>99</epage><pages>83-99</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Real-time heart rate monitoring and early detection of heart abnormalities are vital to determine heart health before it worsens. To achieve this goal, this project uses the backpropagation neural network (BPNN) method including its capability to classify heartbeats into normal or abnormal by inputting heartbeat values in BPM units derived from prototypes utilizing sensors like Sensor Easy Pulse and NodeMCU, along with considerations of age and sports activity. All data from sensors will be stored in Firebase. Then Firebase will connect to Android, and the normal and abnormal heart classification results will be displayed on the Android system. Simulation results successfully examined 40 people as a sample and provided information from real-time heart rate monitoring, age, and sports activity as input. This research seeks to contribute to improving health services at various public health service centers and independently in detecting heart health early.</abstract><doi>10.3991/ijoe.v20i08.48071</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2626-8493
ispartof International Journal of Online and Biomedical Engineering, 2024-05, Vol.20 (8), p.83-99
issn 2626-8493
2626-8493
language eng
recordid cdi_crossref_primary_10_3991_ijoe_v20i08_48071
source Alma/SFX Local Collection
title Prototype Realtime Detection Of Abnormal Heart Beat Using Multiple Back Propagation Neural Network (BPNN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T22%3A06%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prototype%20Realtime%20Detection%20Of%20Abnormal%20Heart%20Beat%20Using%20Multiple%20Back%20Propagation%20Neural%20Network%20(BPNN)&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Suryani&rft.date=2024-05-21&rft.volume=20&rft.issue=8&rft.spage=83&rft.epage=99&rft.pages=83-99&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v20i08.48071&rft_dat=%3Ccrossref%3E10_3991_ijoe_v20i08_48071%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true