Real-Time Concept Drift Detection and Its Application to ECG Data

Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic pre...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Online and Biomedical Engineering 2021-01, Vol.17 (10), p.160-170
Hauptverfasser: Desale, Ketan Sanjay, Shinde, Swati
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 170
container_issue 10
container_start_page 160
container_title International Journal of Online and Biomedical Engineering
container_volume 17
creator Desale, Ketan Sanjay
Shinde, Swati
description Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets.
doi_str_mv 10.3991/ijoe.v17i10.25473
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v17i10_25473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v17i10_25473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-2a8a7cbd1afa2520750ed360533d985fc92fc0cf0a6ebf3766dbfb89a9e3dc143</originalsourceid><addsrcrecordid>eNpNkMtqwzAUREVpoCHNB3SnH3CqhyVZS-OkaSAQKMlaXOsBCo5tLFHo3zePLrqZGc5iFgehN0pWXGv6Hs-DX31TFa-AiVLxJzRnksmiKjV__rdf0DKlMyGECcqoJHNUf3noimO8eNwMvfVjxusphmv67G2OQ4-hd3iXE67HsYsW7iwPeNNs8RoyvKJZgC755V8v0Oljc2w-i_1hu2vqfWGpVrlgUIGyraMQgAlGlCDecUkE505XIljNgiU2EJC-DVxJ6drQVhq0587Ski8QffzaaUhp8sGMU7zA9GMoMTcN5qbBPDSYuwb-C-p_UVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><source>Alma/SFX Local Collection</source><creator>Desale, Ketan Sanjay ; Shinde, Swati</creator><creatorcontrib>Desale, Ketan Sanjay ; Shinde, Swati</creatorcontrib><description>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world &amp; time-series datasets.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v17i10.25473</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2021-01, Vol.17 (10), p.160-170</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Desale, Ketan Sanjay</creatorcontrib><creatorcontrib>Shinde, Swati</creatorcontrib><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><title>International Journal of Online and Biomedical Engineering</title><description>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world &amp; time-series datasets.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAUREVpoCHNB3SnH3CqhyVZS-OkaSAQKMlaXOsBCo5tLFHo3zePLrqZGc5iFgehN0pWXGv6Hs-DX31TFa-AiVLxJzRnksmiKjV__rdf0DKlMyGECcqoJHNUf3noimO8eNwMvfVjxusphmv67G2OQ4-hd3iXE67HsYsW7iwPeNNs8RoyvKJZgC755V8v0Oljc2w-i_1hu2vqfWGpVrlgUIGyraMQgAlGlCDecUkE505XIljNgiU2EJC-DVxJ6drQVhq0587Ski8QffzaaUhp8sGMU7zA9GMoMTcN5qbBPDSYuwb-C-p_UVs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Desale, Ketan Sanjay</creator><creator>Shinde, Swati</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><author>Desale, Ketan Sanjay ; Shinde, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-2a8a7cbd1afa2520750ed360533d985fc92fc0cf0a6ebf3766dbfb89a9e3dc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desale, Ketan Sanjay</creatorcontrib><creatorcontrib>Shinde, Swati</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desale, Ketan Sanjay</au><au>Shinde, Swati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Concept Drift Detection and Its Application to ECG Data</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world &amp; time-series datasets.</abstract><doi>10.3991/ijoe.v17i10.25473</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2626-8493
ispartof International Journal of Online and Biomedical Engineering, 2021-01, Vol.17 (10), p.160-170
issn 2626-8493
2626-8493
language eng
recordid cdi_crossref_primary_10_3991_ijoe_v17i10_25473
source Alma/SFX Local Collection
title Real-Time Concept Drift Detection and Its Application to ECG Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Concept%20Drift%20Detection%20and%20Its%20Application%20to%20ECG%20Data&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Desale,%20Ketan%20Sanjay&rft.date=2021-01-01&rft.volume=17&rft.issue=10&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v17i10.25473&rft_dat=%3Ccrossref%3E10_3991_ijoe_v17i10_25473%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true