Real-Time Concept Drift Detection and Its Application to ECG Data
Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic pre...
Gespeichert in:
Veröffentlicht in: | International Journal of Online and Biomedical Engineering 2021-01, Vol.17 (10), p.160-170 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 170 |
---|---|
container_issue | 10 |
container_start_page | 160 |
container_title | International Journal of Online and Biomedical Engineering |
container_volume | 17 |
creator | Desale, Ketan Sanjay Shinde, Swati |
description | Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets. |
doi_str_mv | 10.3991/ijoe.v17i10.25473 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3991_ijoe_v17i10_25473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3991_ijoe_v17i10_25473</sourcerecordid><originalsourceid>FETCH-LOGICAL-c197t-2a8a7cbd1afa2520750ed360533d985fc92fc0cf0a6ebf3766dbfb89a9e3dc143</originalsourceid><addsrcrecordid>eNpNkMtqwzAUREVpoCHNB3SnH3CqhyVZS-OkaSAQKMlaXOsBCo5tLFHo3zePLrqZGc5iFgehN0pWXGv6Hs-DX31TFa-AiVLxJzRnksmiKjV__rdf0DKlMyGECcqoJHNUf3noimO8eNwMvfVjxusphmv67G2OQ4-hd3iXE67HsYsW7iwPeNNs8RoyvKJZgC755V8v0Oljc2w-i_1hu2vqfWGpVrlgUIGyraMQgAlGlCDecUkE505XIljNgiU2EJC-DVxJ6drQVhq0587Ski8QffzaaUhp8sGMU7zA9GMoMTcN5qbBPDSYuwb-C-p_UVs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><source>Alma/SFX Local Collection</source><creator>Desale, Ketan Sanjay ; Shinde, Swati</creator><creatorcontrib>Desale, Ketan Sanjay ; Shinde, Swati</creatorcontrib><description>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets.</description><identifier>ISSN: 2626-8493</identifier><identifier>EISSN: 2626-8493</identifier><identifier>DOI: 10.3991/ijoe.v17i10.25473</identifier><language>eng</language><ispartof>International Journal of Online and Biomedical Engineering, 2021-01, Vol.17 (10), p.160-170</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Desale, Ketan Sanjay</creatorcontrib><creatorcontrib>Shinde, Swati</creatorcontrib><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><title>International Journal of Online and Biomedical Engineering</title><description>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets.</description><issn>2626-8493</issn><issn>2626-8493</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtqwzAUREVpoCHNB3SnH3CqhyVZS-OkaSAQKMlaXOsBCo5tLFHo3zePLrqZGc5iFgehN0pWXGv6Hs-DX31TFa-AiVLxJzRnksmiKjV__rdf0DKlMyGECcqoJHNUf3noimO8eNwMvfVjxusphmv67G2OQ4-hd3iXE67HsYsW7iwPeNNs8RoyvKJZgC755V8v0Oljc2w-i_1hu2vqfWGpVrlgUIGyraMQgAlGlCDecUkE505XIljNgiU2EJC-DVxJ6drQVhq0587Ski8QffzaaUhp8sGMU7zA9GMoMTcN5qbBPDSYuwb-C-p_UVs</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Desale, Ketan Sanjay</creator><creator>Shinde, Swati</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20210101</creationdate><title>Real-Time Concept Drift Detection and Its Application to ECG Data</title><author>Desale, Ketan Sanjay ; Shinde, Swati</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c197t-2a8a7cbd1afa2520750ed360533d985fc92fc0cf0a6ebf3766dbfb89a9e3dc143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Desale, Ketan Sanjay</creatorcontrib><creatorcontrib>Shinde, Swati</creatorcontrib><collection>CrossRef</collection><jtitle>International Journal of Online and Biomedical Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Desale, Ketan Sanjay</au><au>Shinde, Swati</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-Time Concept Drift Detection and Its Application to ECG Data</atitle><jtitle>International Journal of Online and Biomedical Engineering</jtitle><date>2021-01-01</date><risdate>2021</risdate><volume>17</volume><issue>10</issue><spage>160</spage><epage>170</epage><pages>160-170</pages><issn>2626-8493</issn><eissn>2626-8493</eissn><abstract>Prediction of cardiac disease is one the most crucial topics in the sector of medical info evaluation. The stochastic nature and the variation concerning time in electrocardiogram (ECG) signals make it burdensome to investigate its characteristics. Being evolving in nature, it requires a dynamic predictive model. With the presence of concept drift, the model performance will get worse. Thus learning algorithms require an apt adaptive mechanism to accurately handle the drifting data streams. This paper proposes an inceptive approach, Corazon Concept Drift Detection Method (Corazon CDDM), to detect drifts and adapt to them in real-time in electrocardiogram signals. The proposed methodology results in achieving competitive results compared to the methods proposed in the literature for all types of datasets like synthetic, real-world & time-series datasets.</abstract><doi>10.3991/ijoe.v17i10.25473</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2626-8493 |
ispartof | International Journal of Online and Biomedical Engineering, 2021-01, Vol.17 (10), p.160-170 |
issn | 2626-8493 2626-8493 |
language | eng |
recordid | cdi_crossref_primary_10_3991_ijoe_v17i10_25473 |
source | Alma/SFX Local Collection |
title | Real-Time Concept Drift Detection and Its Application to ECG Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T11%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-Time%20Concept%20Drift%20Detection%20and%20Its%20Application%20to%20ECG%20Data&rft.jtitle=International%20Journal%20of%20Online%20and%20Biomedical%20Engineering&rft.au=Desale,%20Ketan%20Sanjay&rft.date=2021-01-01&rft.volume=17&rft.issue=10&rft.spage=160&rft.epage=170&rft.pages=160-170&rft.issn=2626-8493&rft.eissn=2626-8493&rft_id=info:doi/10.3991/ijoe.v17i10.25473&rft_dat=%3Ccrossref%3E10_3991_ijoe_v17i10_25473%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |