A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel

In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the firs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks and heterogeneous media 2024, Vol.19 (2), p.740-752
Hauptverfasser: Liu, Li-Bin, Ye, Limin, Bao, Xiaobing, Zhang, Yong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 752
container_issue 2
container_start_page 740
container_title Networks and heterogeneous media
container_volume 19
creator Liu, Li-Bin
Ye, Limin
Bao, Xiaobing
Zhang, Yong
description In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.
doi_str_mv 10.3934/nhm.2024033
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_3934_nhm_2024033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_3934_nhm_2024033</sourcerecordid><originalsourceid>FETCH-LOGICAL-c158t-6605a79a13ea18c647131af672a8d893f000db4be4c35a839b135e566a69badb3</originalsourceid><addsrcrecordid>eNot0D1PwzAUhWEPIFEKE3_AO0qx69hJxqriS6rEAqzRTXzduk1suHZV9d9T1E5neXWGh7EHKWaqUeVT2IyzuZiXQqkrNpFam0LWQt6w25S2QpSqEmrCtguesI_B8kgWiYf9iOR7GPiIeRMtd5E48O84ZCQC7kPGNcXCeueQMGR_SvF3D9nHwA8-b071AWE3HHnyYb0fgPgOKeBwx64dDAnvLztlXy_Pn8u3YvXx-r5crIpe6joXxggNVQNSIci6N2UllQRnqjnUtm6UE0LYruyw7JWGWjWdVBq1MWCaDmynpuzx_NtTTInQtT_kR6BjK0X7T9OeaNoLjfoDvEta6w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel</title><source>Alma/SFX Local Collection</source><creator>Liu, Li-Bin ; Ye, Limin ; Bao, Xiaobing ; Zhang, Yong</creator><creatorcontrib>Liu, Li-Bin ; Ye, Limin ; Bao, Xiaobing ; Zhang, Yong</creatorcontrib><description>In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.</description><identifier>ISSN: 1556-1801</identifier><identifier>DOI: 10.3934/nhm.2024033</identifier><language>eng</language><ispartof>Networks and heterogeneous media, 2024, Vol.19 (2), p.740-752</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c158t-6605a79a13ea18c647131af672a8d893f000db4be4c35a839b135e566a69badb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,4022,27922,27923,27924</link.rule.ids></links><search><creatorcontrib>Liu, Li-Bin</creatorcontrib><creatorcontrib>Ye, Limin</creatorcontrib><creatorcontrib>Bao, Xiaobing</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><title>A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel</title><title>Networks and heterogeneous media</title><description>In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.</description><issn>1556-1801</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNot0D1PwzAUhWEPIFEKE3_AO0qx69hJxqriS6rEAqzRTXzduk1suHZV9d9T1E5neXWGh7EHKWaqUeVT2IyzuZiXQqkrNpFam0LWQt6w25S2QpSqEmrCtguesI_B8kgWiYf9iOR7GPiIeRMtd5E48O84ZCQC7kPGNcXCeueQMGR_SvF3D9nHwA8-b071AWE3HHnyYb0fgPgOKeBwx64dDAnvLztlXy_Pn8u3YvXx-r5crIpe6joXxggNVQNSIci6N2UllQRnqjnUtm6UE0LYruyw7JWGWjWdVBq1MWCaDmynpuzx_NtTTInQtT_kR6BjK0X7T9OeaNoLjfoDvEta6w</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Liu, Li-Bin</creator><creator>Ye, Limin</creator><creator>Bao, Xiaobing</creator><creator>Zhang, Yong</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2024</creationdate><title>A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel</title><author>Liu, Li-Bin ; Ye, Limin ; Bao, Xiaobing ; Zhang, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c158t-6605a79a13ea18c647131af672a8d893f000db4be4c35a839b135e566a69badb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Li-Bin</creatorcontrib><creatorcontrib>Ye, Limin</creatorcontrib><creatorcontrib>Bao, Xiaobing</creatorcontrib><creatorcontrib>Zhang, Yong</creatorcontrib><collection>CrossRef</collection><jtitle>Networks and heterogeneous media</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Li-Bin</au><au>Ye, Limin</au><au>Bao, Xiaobing</au><au>Zhang, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel</atitle><jtitle>Networks and heterogeneous media</jtitle><date>2024</date><risdate>2024</risdate><volume>19</volume><issue>2</issue><spage>740</spage><epage>752</epage><pages>740-752</pages><issn>1556-1801</issn><abstract>In this paper, a second finite difference method on a graded grid is proposed for a Volterra integro-differential equation with a weakly singular kernel. The proposed scheme is obtained by using the two-step backward differentiation formula (BDF2) to discretize the first derivative term and the first-order interpolation scheme to approximate the integral term. The analysis of stability is proved and used to prove the convergence of our presented numerical method in the discrete maximum norm. Finally, Numerical experiments are given to verify the theoretical results.</abstract><doi>10.3934/nhm.2024033</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1556-1801
ispartof Networks and heterogeneous media, 2024, Vol.19 (2), p.740-752
issn 1556-1801
language eng
recordid cdi_crossref_primary_10_3934_nhm_2024033
source Alma/SFX Local Collection
title A second order numerical method for a Volterra integro-differential equation with a weakly singular kernel
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T00%3A37%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20second%20order%20numerical%20method%20for%20a%20Volterra%20integro-differential%20equation%20with%20a%20weakly%20singular%20kernel&rft.jtitle=Networks%20and%20heterogeneous%20media&rft.au=Liu,%20Li-Bin&rft.date=2024&rft.volume=19&rft.issue=2&rft.spage=740&rft.epage=752&rft.pages=740-752&rft.issn=1556-1801&rft_id=info:doi/10.3934/nhm.2024033&rft_dat=%3Ccrossref%3E10_3934_nhm_2024033%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true