On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain
Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to sub...
Gespeichert in:
Veröffentlicht in: | AIMS Mathematics 2021-01, Vol.6 (4), p.3037-3052 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3052 |
---|---|
container_issue | 4 |
container_start_page | 3037 |
container_title | AIMS Mathematics |
container_volume | 6 |
creator | Ahmad, Bakhtiar Khan, Muhammad Ghaffar Frasin, Basem Aref Aouf, Mohamed Kamal Abdeljawad, Thabet Mashwani, Wali Khan Arif, Muhammad |
description | Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions. |
doi_str_mv | 10.3934/math.2021185 |
format | Article |
fullrecord | <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3934_math_2021185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A692715979</galeid><doaj_id>oai_doaj_org_article_a74e7800bfde4ed49de0058b6b122369</doaj_id><sourcerecordid>A692715979</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-4cbf455622c3d217e362550ad4e467f5ab7287e10e5102f83c477806daae4c873</originalsourceid><addsrcrecordid>eNqNkUtr3DAUhU1poCHNrj_A-9ZTvSUv06GPQCCbZC2upauJgi2lstzSf19NJoQuixa6XM530NHpug-U7PjIxecF6sOOEUapkW-6cyY0H9RozNt_5nfd5bo-EtJUTDAtzru729T_HCDBnA8b9jn0C5a85PL0EF2_bHONv2DGVPuwJVdjTmsfUz_jkuLqoD4jX7CkvM1z7H1eIKb33VmAecXLl_uiu__29W7_Y7i5_X69v7oZHNemDsJNQUipGHPcM6qRKyYlAS9QKB0kTJoZjZSgpIQFw53Q2hDlAVA4o_lFd33y9Rke7VOJC5Q_NkO0z4tcDhZKjW5GC1pgY8kUPAr0YvRIiDSTmihjXI3Na3fyOrS4NqaQawHXjsclupwwxLa_UiPTVI76CHw6Aa7kdS0YXh9AiT02Yo-N2JdGmtyc5L9xymF1EZPDV6RVolrYlr9NhO5jheNf7_OWakM__j_K_wJO_Z8x</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /></source><creator>Ahmad, Bakhtiar ; Khan, Muhammad Ghaffar ; Frasin, Basem Aref ; Aouf, Mohamed Kamal ; Abdeljawad, Thabet ; Mashwani, Wali Khan ; Arif, Muhammad</creator><creatorcontrib>Ahmad, Bakhtiar ; Khan, Muhammad Ghaffar ; Frasin, Basem Aref ; Aouf, Mohamed Kamal ; Abdeljawad, Thabet ; Mashwani, Wali Khan ; Arif, Muhammad ; Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan ; Faculty of Science, Department of Mathematics, AL AL-Bayt University Mafraq, Jordon ; Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan ; Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan ; Department of Medical Research, China Medical University Taichung 40402, Taiwan ; Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt ; Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia</creatorcontrib><description>Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.</description><identifier>ISSN: 2473-6988</identifier><identifier>EISSN: 2473-6988</identifier><identifier>DOI: 10.3934/math.2021185</identifier><language>eng</language><publisher>SPRINGFIELD: Amer Inst Mathematical Sciences-Aims</publisher><subject>janowski functions ; lemniscate of bernoulli ; Mathematics ; Mathematics, Applied ; meromorphic functions ; Physical Sciences ; q-calculus ; Science & Technology</subject><ispartof>AIMS Mathematics, 2021-01, Vol.6 (4), p.3037-3052</ispartof><rights>COPYRIGHT 2021 AIMS Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>true</woscitedreferencessubscribed><woscitedreferencescount>26</woscitedreferencescount><woscitedreferencesoriginalsourcerecordid>wos000672862500001</woscitedreferencesoriginalsourcerecordid><citedby>FETCH-LOGICAL-c378t-4cbf455622c3d217e362550ad4e467f5ab7287e10e5102f83c477806daae4c873</citedby><cites>FETCH-LOGICAL-c378t-4cbf455622c3d217e362550ad4e467f5ab7287e10e5102f83c477806daae4c873</cites><orcidid>0000-0001-8608-8063 ; 0000-0003-1484-7643 ; 0000-0002-3716-2818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,866,2104,2116,27931,27932,39265</link.rule.ids></links><search><creatorcontrib>Ahmad, Bakhtiar</creatorcontrib><creatorcontrib>Khan, Muhammad Ghaffar</creatorcontrib><creatorcontrib>Frasin, Basem Aref</creatorcontrib><creatorcontrib>Aouf, Mohamed Kamal</creatorcontrib><creatorcontrib>Abdeljawad, Thabet</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan</creatorcontrib><creatorcontrib>Faculty of Science, Department of Mathematics, AL AL-Bayt University Mafraq, Jordon</creatorcontrib><creatorcontrib>Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan</creatorcontrib><creatorcontrib>Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan</creatorcontrib><creatorcontrib>Department of Medical Research, China Medical University Taichung 40402, Taiwan</creatorcontrib><creatorcontrib>Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt</creatorcontrib><creatorcontrib>Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia</creatorcontrib><title>On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain</title><title>AIMS Mathematics</title><addtitle>AIMS MATH</addtitle><description>Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.</description><subject>janowski functions</subject><subject>lemniscate of bernoulli</subject><subject>Mathematics</subject><subject>Mathematics, Applied</subject><subject>meromorphic functions</subject><subject>Physical Sciences</subject><subject>q-calculus</subject><subject>Science & Technology</subject><issn>2473-6988</issn><issn>2473-6988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>HGBXW</sourceid><sourceid>DOA</sourceid><recordid>eNqNkUtr3DAUhU1poCHNrj_A-9ZTvSUv06GPQCCbZC2upauJgi2lstzSf19NJoQuixa6XM530NHpug-U7PjIxecF6sOOEUapkW-6cyY0H9RozNt_5nfd5bo-EtJUTDAtzru729T_HCDBnA8b9jn0C5a85PL0EF2_bHONv2DGVPuwJVdjTmsfUz_jkuLqoD4jX7CkvM1z7H1eIKb33VmAecXLl_uiu__29W7_Y7i5_X69v7oZHNemDsJNQUipGHPcM6qRKyYlAS9QKB0kTJoZjZSgpIQFw53Q2hDlAVA4o_lFd33y9Rke7VOJC5Q_NkO0z4tcDhZKjW5GC1pgY8kUPAr0YvRIiDSTmihjXI3Na3fyOrS4NqaQawHXjsclupwwxLa_UiPTVI76CHw6Aa7kdS0YXh9AiT02Yo-N2JdGmtyc5L9xymF1EZPDV6RVolrYlr9NhO5jheNf7_OWakM__j_K_wJO_Z8x</recordid><startdate>20210101</startdate><enddate>20210101</enddate><creator>Ahmad, Bakhtiar</creator><creator>Khan, Muhammad Ghaffar</creator><creator>Frasin, Basem Aref</creator><creator>Aouf, Mohamed Kamal</creator><creator>Abdeljawad, Thabet</creator><creator>Mashwani, Wali Khan</creator><creator>Arif, Muhammad</creator><general>Amer Inst Mathematical Sciences-Aims</general><general>AIMS Press</general><scope>BLEPL</scope><scope>DTL</scope><scope>HGBXW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8608-8063</orcidid><orcidid>https://orcid.org/0000-0003-1484-7643</orcidid><orcidid>https://orcid.org/0000-0002-3716-2818</orcidid></search><sort><creationdate>20210101</creationdate><title>On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain</title><author>Ahmad, Bakhtiar ; Khan, Muhammad Ghaffar ; Frasin, Basem Aref ; Aouf, Mohamed Kamal ; Abdeljawad, Thabet ; Mashwani, Wali Khan ; Arif, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-4cbf455622c3d217e362550ad4e467f5ab7287e10e5102f83c477806daae4c873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>janowski functions</topic><topic>lemniscate of bernoulli</topic><topic>Mathematics</topic><topic>Mathematics, Applied</topic><topic>meromorphic functions</topic><topic>Physical Sciences</topic><topic>q-calculus</topic><topic>Science & Technology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ahmad, Bakhtiar</creatorcontrib><creatorcontrib>Khan, Muhammad Ghaffar</creatorcontrib><creatorcontrib>Frasin, Basem Aref</creatorcontrib><creatorcontrib>Aouf, Mohamed Kamal</creatorcontrib><creatorcontrib>Abdeljawad, Thabet</creatorcontrib><creatorcontrib>Mashwani, Wali Khan</creatorcontrib><creatorcontrib>Arif, Muhammad</creatorcontrib><creatorcontrib>Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan</creatorcontrib><creatorcontrib>Faculty of Science, Department of Mathematics, AL AL-Bayt University Mafraq, Jordon</creatorcontrib><creatorcontrib>Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan</creatorcontrib><creatorcontrib>Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan</creatorcontrib><creatorcontrib>Department of Medical Research, China Medical University Taichung 40402, Taiwan</creatorcontrib><creatorcontrib>Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt</creatorcontrib><creatorcontrib>Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia</creatorcontrib><collection>Web of Science Core Collection</collection><collection>Science Citation Index Expanded</collection><collection>Web of Science - Science Citation Index Expanded - 2021</collection><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIMS Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad, Bakhtiar</au><au>Khan, Muhammad Ghaffar</au><au>Frasin, Basem Aref</au><au>Aouf, Mohamed Kamal</au><au>Abdeljawad, Thabet</au><au>Mashwani, Wali Khan</au><au>Arif, Muhammad</au><aucorp>Institute of Numerical Sciences, Kohat University of Science and Technology, Kohat, Pakistan</aucorp><aucorp>Faculty of Science, Department of Mathematics, AL AL-Bayt University Mafraq, Jordon</aucorp><aucorp>Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan</aucorp><aucorp>Abdul Wali Khan University Mardan, 23200 Mardan, Pakistan</aucorp><aucorp>Department of Medical Research, China Medical University Taichung 40402, Taiwan</aucorp><aucorp>Department of Mathematics, Faculty of Science, Mansoura 35516, Egypt</aucorp><aucorp>Department of Mathematics and General Sciences, Prince Sultan University, Riyadh, Saudi Arabia</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain</atitle><jtitle>AIMS Mathematics</jtitle><stitle>AIMS MATH</stitle><date>2021-01-01</date><risdate>2021</risdate><volume>6</volume><issue>4</issue><spage>3037</spage><epage>3052</epage><pages>3037-3052</pages><issn>2473-6988</issn><eissn>2473-6988</eissn><abstract>Utilizing the concepts from q-calculus in the field of geometric function theory, we introduce a subclass of p-valent meromorphic functions relating to the domain of lemniscate of Bernoulli. The well known problem of Fekete-Szegofor this class is evaluated. Also some geometric results related to subordinations are evaluated for this class in connection with Janowski functions.</abstract><cop>SPRINGFIELD</cop><pub>Amer Inst Mathematical Sciences-Aims</pub><doi>10.3934/math.2021185</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8608-8063</orcidid><orcidid>https://orcid.org/0000-0003-1484-7643</orcidid><orcidid>https://orcid.org/0000-0002-3716-2818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2473-6988 |
ispartof | AIMS Mathematics, 2021-01, Vol.6 (4), p.3037-3052 |
issn | 2473-6988 2473-6988 |
language | eng |
recordid | cdi_crossref_primary_10_3934_math_2021185 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Web of Science - Science Citation Index Expanded - 2021<img src="https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg" /> |
subjects | janowski functions lemniscate of bernoulli Mathematics Mathematics, Applied meromorphic functions Physical Sciences q-calculus Science & Technology |
title | On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T16%3A40%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20q-analogue%20of%20meromorphic%20multivalent%20functions%20in%20lemniscate%20of%20Bernoulli%20domain&rft.jtitle=AIMS%20Mathematics&rft.au=Ahmad,%20Bakhtiar&rft.aucorp=Institute%20of%20Numerical%20Sciences,%20Kohat%20University%20of%20Science%20and%20Technology,%20Kohat,%20Pakistan&rft.date=2021-01-01&rft.volume=6&rft.issue=4&rft.spage=3037&rft.epage=3052&rft.pages=3037-3052&rft.issn=2473-6988&rft.eissn=2473-6988&rft_id=info:doi/10.3934/math.2021185&rft_dat=%3Cgale_cross%3EA692715979%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A692715979&rft_doaj_id=oai_doaj_org_article_a74e7800bfde4ed49de0058b6b122369&rfr_iscdi=true |