On existence of PI-exponents of unital algebras

We construct a family of unital non-associative algebras $ \{T_\alpha\vert\; 2 2 $. This is the first example of a unital algebra whose PI-exponent does not exist.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronic Research Archive 2020-06, Vol.28 (2), p.853-859
Hauptverfasser: Repovš, Dušan D., Zaicev, Mikhail V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 859
container_issue 2
container_start_page 853
container_title Electronic Research Archive
container_volume 28
creator Repovš, Dušan D.
Zaicev, Mikhail V.
description We construct a family of unital non-associative algebras $ \{T_\alpha\vert\; 2 2 $. This is the first example of a unital algebra whose PI-exponent does not exist.
doi_str_mv 10.3934/era.2020044
format Article
fullrecord <record><control><sourceid>gale_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3934_era_2020044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A683607868</galeid><sourcerecordid>A683607868</sourcerecordid><originalsourceid>FETCH-LOGICAL-c337t-945aad876803a37fd6a92106b3013f39b170da6e4efdc347f28bb2abf99ad04c3</originalsourceid><addsrcrecordid>eNpNkE9rwzAMxc3YYKXraV8g95FWtlzHPpayP4VCd9jOQXHkkpEmxc6g-_ZLaQ9FhyeJp4f4CfEsYY4O9YIjzRUoAK3vxEQZa3O5dPr-pn8Us5R-AEBZOfrMRCx2XcanJg3cec76kH1ucj4d-467IZ3n364ZqM2o3XMVKT2Jh0Bt4tlVp-L77fVr_ZFvd--b9Wqbe8RiyJ1eEtW2MBaQsAi1IackmApBYkBXyQJqMqw51B51EZStKkVVcI5q0B6nYn7J3VPLZdOFfojkx6r50PjxvdCM-5WxaKCwo0zFy-XAxz6lyKE8xuZA8a-UUJ75lCOf8soH_wGcqVcc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On existence of PI-exponents of unital algebras</title><source>Alma/SFX Local Collection</source><creator>Repovš, Dušan D. ; Zaicev, Mikhail V.</creator><creatorcontrib>Repovš, Dušan D. ; Zaicev, Mikhail V.</creatorcontrib><description><![CDATA[We construct a family of unital non-associative algebras <inline-formula><tex-math id="M1">$ \{T_\alpha\vert\; 2<\alpha\in\mathbb R\} $</tex-math></inline-formula> such that <inline-formula><tex-math id="M2">$ \underline{exp}(T_\alpha) = 2 $</tex-math></inline-formula>, whereas <inline-formula><tex-math id="M3">$ \alpha\le\overline{exp}(T_\alpha)\le\alpha+1 $</tex-math></inline-formula>. In particular, it follows that ordinary PI-exponent of codimension growth of algebra <inline-formula><tex-math id="M4">$ T_\alpha $</tex-math></inline-formula> does not exist for any <inline-formula><tex-math id="M5">$ \alpha> 2 $</tex-math></inline-formula>. This is the first example of a unital algebra whose PI-exponent does not exist.]]></description><identifier>ISSN: 2688-1594</identifier><identifier>EISSN: 2688-1594</identifier><identifier>DOI: 10.3934/era.2020044</identifier><language>eng</language><publisher>AIMS Press</publisher><subject>Algebra</subject><ispartof>Electronic Research Archive, 2020-06, Vol.28 (2), p.853-859</ispartof><rights>COPYRIGHT 2020 AIMS Press</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c337t-945aad876803a37fd6a92106b3013f39b170da6e4efdc347f28bb2abf99ad04c3</citedby><cites>FETCH-LOGICAL-c337t-945aad876803a37fd6a92106b3013f39b170da6e4efdc347f28bb2abf99ad04c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Repovš, Dušan D.</creatorcontrib><creatorcontrib>Zaicev, Mikhail V.</creatorcontrib><title>On existence of PI-exponents of unital algebras</title><title>Electronic Research Archive</title><description><![CDATA[We construct a family of unital non-associative algebras <inline-formula><tex-math id="M1">$ \{T_\alpha\vert\; 2<\alpha\in\mathbb R\} $</tex-math></inline-formula> such that <inline-formula><tex-math id="M2">$ \underline{exp}(T_\alpha) = 2 $</tex-math></inline-formula>, whereas <inline-formula><tex-math id="M3">$ \alpha\le\overline{exp}(T_\alpha)\le\alpha+1 $</tex-math></inline-formula>. In particular, it follows that ordinary PI-exponent of codimension growth of algebra <inline-formula><tex-math id="M4">$ T_\alpha $</tex-math></inline-formula> does not exist for any <inline-formula><tex-math id="M5">$ \alpha> 2 $</tex-math></inline-formula>. This is the first example of a unital algebra whose PI-exponent does not exist.]]></description><subject>Algebra</subject><issn>2688-1594</issn><issn>2688-1594</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkE9rwzAMxc3YYKXraV8g95FWtlzHPpayP4VCd9jOQXHkkpEmxc6g-_ZLaQ9FhyeJp4f4CfEsYY4O9YIjzRUoAK3vxEQZa3O5dPr-pn8Us5R-AEBZOfrMRCx2XcanJg3cec76kH1ucj4d-467IZ3n364ZqM2o3XMVKT2Jh0Bt4tlVp-L77fVr_ZFvd--b9Wqbe8RiyJ1eEtW2MBaQsAi1IackmApBYkBXyQJqMqw51B51EZStKkVVcI5q0B6nYn7J3VPLZdOFfojkx6r50PjxvdCM-5WxaKCwo0zFy-XAxz6lyKE8xuZA8a-UUJ75lCOf8soH_wGcqVcc</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Repovš, Dušan D.</creator><creator>Zaicev, Mikhail V.</creator><general>AIMS Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>IAO</scope></search><sort><creationdate>20200601</creationdate><title>On existence of PI-exponents of unital algebras</title><author>Repovš, Dušan D. ; Zaicev, Mikhail V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c337t-945aad876803a37fd6a92106b3013f39b170da6e4efdc347f28bb2abf99ad04c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algebra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Repovš, Dušan D.</creatorcontrib><creatorcontrib>Zaicev, Mikhail V.</creatorcontrib><collection>CrossRef</collection><collection>Gale Academic OneFile</collection><jtitle>Electronic Research Archive</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Repovš, Dušan D.</au><au>Zaicev, Mikhail V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On existence of PI-exponents of unital algebras</atitle><jtitle>Electronic Research Archive</jtitle><date>2020-06-01</date><risdate>2020</risdate><volume>28</volume><issue>2</issue><spage>853</spage><epage>859</epage><pages>853-859</pages><issn>2688-1594</issn><eissn>2688-1594</eissn><abstract><![CDATA[We construct a family of unital non-associative algebras <inline-formula><tex-math id="M1">$ \{T_\alpha\vert\; 2<\alpha\in\mathbb R\} $</tex-math></inline-formula> such that <inline-formula><tex-math id="M2">$ \underline{exp}(T_\alpha) = 2 $</tex-math></inline-formula>, whereas <inline-formula><tex-math id="M3">$ \alpha\le\overline{exp}(T_\alpha)\le\alpha+1 $</tex-math></inline-formula>. In particular, it follows that ordinary PI-exponent of codimension growth of algebra <inline-formula><tex-math id="M4">$ T_\alpha $</tex-math></inline-formula> does not exist for any <inline-formula><tex-math id="M5">$ \alpha> 2 $</tex-math></inline-formula>. This is the first example of a unital algebra whose PI-exponent does not exist.]]></abstract><pub>AIMS Press</pub><doi>10.3934/era.2020044</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2688-1594
ispartof Electronic Research Archive, 2020-06, Vol.28 (2), p.853-859
issn 2688-1594
2688-1594
language eng
recordid cdi_crossref_primary_10_3934_era_2020044
source Alma/SFX Local Collection
subjects Algebra
title On existence of PI-exponents of unital algebras
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T04%3A18%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20existence%20of%20PI-exponents%20of%20unital%20algebras&rft.jtitle=Electronic%20Research%20Archive&rft.au=Repov%C5%A1,%20Du%C5%A1an%20D.&rft.date=2020-06-01&rft.volume=28&rft.issue=2&rft.spage=853&rft.epage=859&rft.pages=853-859&rft.issn=2688-1594&rft.eissn=2688-1594&rft_id=info:doi/10.3934/era.2020044&rft_dat=%3Cgale_cross%3EA683607868%3C/gale_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_galeid=A683607868&rfr_iscdi=true