Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History

The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and res...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2023-07, Vol.952 (1), p.L18
1. Verfasser: Crossfield, Ian J. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L18
container_title Astrophysical journal. Letters
container_volume 952
creator Crossfield, Ian J. M.
description The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO 2 in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO 2 has been detected). Our 3D grid contains 11 3 models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO 2 can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO 2 abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO 2 on a wider array of planetary and stellar parameters, both for the prototypical SO 2 planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.
doi_str_mv 10.3847/2041-8213/ace35f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_ace35f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_105f001ddeef42b4a1958a535f831aef</doaj_id><sourcerecordid>2841999464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4soOKd3jwXBk3VJmrTpcQztBgNB1Gt4TV6koy416YTd_Bp-PT-JnZV5EU8v_Pm9_wu_KDqn5DqVPJ8wwmkiGU0noDEV9iAa7aPD_ZuI4-gkhBUhjGRUjqLyyTXQ1Q0mnUvCprEbH9_3gQvxDNbxPWr3hj6GuIQQlzWsu8_3jxBPtfbYU-t4XofO-e1pdGShCXj2M8fR4-3Nw2yeLO_KxWy6TDTneZfkNtVIDDGZBqlRZ5BRYYwQotKGCUYLXiGzLCUMubU5y6q84kUui55ES9JxtBh6jYOVan39An6rHNTqO3D-WYHvat2gokRYQqgxiJazigMthATRu5EpBbR918XQ1Xr3usHQqZXb-HX_fcUkp0VR8Iz3FBko7V0IHu3-KiVqp17t3KqdZzWo71euhpXatb-d_-CXf-DQrhpVCKaoWlKpWmPTL8qakn8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841999464</pqid></control><display><type>article</type><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><source>Directory of Open Access Journals (DOAJ)</source><source>Institute of Physics IOPscience extra</source><source>IOP_英国物理学会OA刊</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Crossfield, Ian J. M.</creator><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><description>The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO 2 in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO 2 has been detected). Our 3D grid contains 11 3 models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO 2 can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO 2 abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO 2 on a wider array of planetary and stellar parameters, both for the prototypical SO 2 planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ace35f</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Abundance ; Accretion disks ; Astronomical models ; Astronomy data modeling ; Atmosphere ; Atmospheric models ; Chemical abundances ; Deposition ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Exoplanet formation ; Extrasolar planets ; Gas giant planets ; Ice giant planets ; Infrared spectroscopy ; James Webb Space Telescope ; Jupiter ; Metallicity ; Modelling ; Molecular spectroscopy ; Oxygen ; Photochemical models ; Photochemicals ; Planet formation ; Planetary atmospheres ; Planetary composition ; Planets ; Protoplanetary disks ; Ratios ; Spectra ; Stellar models ; Sulfur ; Sulfur dioxide</subject><ispartof>Astrophysical journal. Letters, 2023-07, Vol.952 (1), p.L18</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</citedby><cites>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ace35f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO 2 in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO 2 has been detected). Our 3D grid contains 11 3 models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO 2 can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO 2 abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO 2 on a wider array of planetary and stellar parameters, both for the prototypical SO 2 planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</description><subject>Abundance</subject><subject>Accretion disks</subject><subject>Astronomical models</subject><subject>Astronomy data modeling</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Chemical abundances</subject><subject>Deposition</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Exoplanet formation</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Ice giant planets</subject><subject>Infrared spectroscopy</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Metallicity</subject><subject>Modelling</subject><subject>Molecular spectroscopy</subject><subject>Oxygen</subject><subject>Photochemical models</subject><subject>Photochemicals</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary composition</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Ratios</subject><subject>Spectra</subject><subject>Stellar models</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEFLwzAUx4soOKd3jwXBk3VJmrTpcQztBgNB1Gt4TV6koy416YTd_Bp-PT-JnZV5EU8v_Pm9_wu_KDqn5DqVPJ8wwmkiGU0noDEV9iAa7aPD_ZuI4-gkhBUhjGRUjqLyyTXQ1Q0mnUvCprEbH9_3gQvxDNbxPWr3hj6GuIQQlzWsu8_3jxBPtfbYU-t4XofO-e1pdGShCXj2M8fR4-3Nw2yeLO_KxWy6TDTneZfkNtVIDDGZBqlRZ5BRYYwQotKGCUYLXiGzLCUMubU5y6q84kUui55ES9JxtBh6jYOVan39An6rHNTqO3D-WYHvat2gokRYQqgxiJazigMthATRu5EpBbR918XQ1Xr3usHQqZXb-HX_fcUkp0VR8Iz3FBko7V0IHu3-KiVqp17t3KqdZzWo71euhpXatb-d_-CXf-DQrhpVCKaoWlKpWmPTL8qakn8</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Crossfield, Ian J. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20230701</creationdate><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><author>Crossfield, Ian J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abundance</topic><topic>Accretion disks</topic><topic>Astronomical models</topic><topic>Astronomy data modeling</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Chemical abundances</topic><topic>Deposition</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Exoplanet formation</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Ice giant planets</topic><topic>Infrared spectroscopy</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Metallicity</topic><topic>Modelling</topic><topic>Molecular spectroscopy</topic><topic>Oxygen</topic><topic>Photochemical models</topic><topic>Photochemicals</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary composition</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Ratios</topic><topic>Spectra</topic><topic>Stellar models</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crossfield, Ian J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>952</volume><issue>1</issue><spage>L18</spage><pages>L18-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO 2 in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO 2 has been detected). Our 3D grid contains 11 3 models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO 2 can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO 2 abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO 2 on a wider array of planetary and stellar parameters, both for the prototypical SO 2 planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ace35f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2023-07, Vol.952 (1), p.L18
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_ace35f
source Directory of Open Access Journals (DOAJ); Institute of Physics IOPscience extra; IOP_英国物理学会OA刊; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects Abundance
Accretion disks
Astronomical models
Astronomy data modeling
Atmosphere
Atmospheric models
Chemical abundances
Deposition
Exoplanet atmospheres
Exoplanet atmospheric composition
Exoplanet formation
Extrasolar planets
Gas giant planets
Ice giant planets
Infrared spectroscopy
James Webb Space Telescope
Jupiter
Metallicity
Modelling
Molecular spectroscopy
Oxygen
Photochemical models
Photochemicals
Planet formation
Planetary atmospheres
Planetary composition
Planets
Protoplanetary disks
Ratios
Spectra
Stellar models
Sulfur
Sulfur dioxide
title Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatile-to-sulfur%20Ratios%20Can%20Recover%20a%20Gas%20Giant%E2%80%99s%20Accretion%20History&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Crossfield,%20Ian%20J.%20M.&rft.date=2023-07-01&rft.volume=952&rft.issue=1&rft.spage=L18&rft.pages=L18-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ace35f&rft_dat=%3Cproquest_cross%3E2841999464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841999464&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_105f001ddeef42b4a1958a535f831aef&rfr_iscdi=true