Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History
The newfound ability to detect SO 2 in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and res...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2023-07, Vol.952 (1), p.L18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | L18 |
container_title | Astrophysical journal. Letters |
container_volume | 952 |
creator | Crossfield, Ian J. M. |
description | The newfound ability to detect SO
2
in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO
2
in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO
2
has been detected). Our 3D grid contains 11
3
models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO
2
can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO
2
abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO
2
on a wider array of planetary and stellar parameters, both for the prototypical SO
2
planet WASP-39b, as well as for other hot Jupiters and smaller gas giants. |
doi_str_mv | 10.3847/2041-8213/ace35f |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_ace35f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_105f001ddeef42b4a1958a535f831aef</doaj_id><sourcerecordid>2841999464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</originalsourceid><addsrcrecordid>eNp9kEFLwzAUx4soOKd3jwXBk3VJmrTpcQztBgNB1Gt4TV6koy416YTd_Bp-PT-JnZV5EU8v_Pm9_wu_KDqn5DqVPJ8wwmkiGU0noDEV9iAa7aPD_ZuI4-gkhBUhjGRUjqLyyTXQ1Q0mnUvCprEbH9_3gQvxDNbxPWr3hj6GuIQQlzWsu8_3jxBPtfbYU-t4XofO-e1pdGShCXj2M8fR4-3Nw2yeLO_KxWy6TDTneZfkNtVIDDGZBqlRZ5BRYYwQotKGCUYLXiGzLCUMubU5y6q84kUui55ES9JxtBh6jYOVan39An6rHNTqO3D-WYHvat2gokRYQqgxiJazigMthATRu5EpBbR918XQ1Xr3usHQqZXb-HX_fcUkp0VR8Iz3FBko7V0IHu3-KiVqp17t3KqdZzWo71euhpXatb-d_-CXf-DQrhpVCKaoWlKpWmPTL8qakn8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2841999464</pqid></control><display><type>article</type><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><source>Directory of Open Access Journals (DOAJ)</source><source>Institute of Physics IOPscience extra</source><source>IOP_英国物理学会OA刊</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Crossfield, Ian J. M.</creator><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><description>The newfound ability to detect SO
2
in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO
2
in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO
2
has been detected). Our 3D grid contains 11
3
models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO
2
can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO
2
abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO
2
on a wider array of planetary and stellar parameters, both for the prototypical SO
2
planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ace35f</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Abundance ; Accretion disks ; Astronomical models ; Astronomy data modeling ; Atmosphere ; Atmospheric models ; Chemical abundances ; Deposition ; Exoplanet atmospheres ; Exoplanet atmospheric composition ; Exoplanet formation ; Extrasolar planets ; Gas giant planets ; Ice giant planets ; Infrared spectroscopy ; James Webb Space Telescope ; Jupiter ; Metallicity ; Modelling ; Molecular spectroscopy ; Oxygen ; Photochemical models ; Photochemicals ; Planet formation ; Planetary atmospheres ; Planetary composition ; Planets ; Protoplanetary disks ; Ratios ; Spectra ; Stellar models ; Sulfur ; Sulfur dioxide</subject><ispartof>Astrophysical journal. Letters, 2023-07, Vol.952 (1), p.L18</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</citedby><cites>FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ace35f/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The newfound ability to detect SO
2
in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO
2
in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO
2
has been detected). Our 3D grid contains 11
3
models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO
2
can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO
2
abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO
2
on a wider array of planetary and stellar parameters, both for the prototypical SO
2
planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</description><subject>Abundance</subject><subject>Accretion disks</subject><subject>Astronomical models</subject><subject>Astronomy data modeling</subject><subject>Atmosphere</subject><subject>Atmospheric models</subject><subject>Chemical abundances</subject><subject>Deposition</subject><subject>Exoplanet atmospheres</subject><subject>Exoplanet atmospheric composition</subject><subject>Exoplanet formation</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Ice giant planets</subject><subject>Infrared spectroscopy</subject><subject>James Webb Space Telescope</subject><subject>Jupiter</subject><subject>Metallicity</subject><subject>Modelling</subject><subject>Molecular spectroscopy</subject><subject>Oxygen</subject><subject>Photochemical models</subject><subject>Photochemicals</subject><subject>Planet formation</subject><subject>Planetary atmospheres</subject><subject>Planetary composition</subject><subject>Planets</subject><subject>Protoplanetary disks</subject><subject>Ratios</subject><subject>Spectra</subject><subject>Stellar models</subject><subject>Sulfur</subject><subject>Sulfur dioxide</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kEFLwzAUx4soOKd3jwXBk3VJmrTpcQztBgNB1Gt4TV6koy416YTd_Bp-PT-JnZV5EU8v_Pm9_wu_KDqn5DqVPJ8wwmkiGU0noDEV9iAa7aPD_ZuI4-gkhBUhjGRUjqLyyTXQ1Q0mnUvCprEbH9_3gQvxDNbxPWr3hj6GuIQQlzWsu8_3jxBPtfbYU-t4XofO-e1pdGShCXj2M8fR4-3Nw2yeLO_KxWy6TDTneZfkNtVIDDGZBqlRZ5BRYYwQotKGCUYLXiGzLCUMubU5y6q84kUui55ES9JxtBh6jYOVan39An6rHNTqO3D-WYHvat2gokRYQqgxiJazigMthATRu5EpBbR918XQ1Xr3usHQqZXb-HX_fcUkp0VR8Iz3FBko7V0IHu3-KiVqp17t3KqdZzWo71euhpXatb-d_-CXf-DQrhpVCKaoWlKpWmPTL8qakn8</recordid><startdate>20230701</startdate><enddate>20230701</enddate><creator>Crossfield, Ian J. M.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope></search><sort><creationdate>20230701</creationdate><title>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</title><author>Crossfield, Ian J. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-7f3ce0d0d6ca8cec6a615dd555bcd252194be2f2302e4ff726b7b497896a6ef03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Abundance</topic><topic>Accretion disks</topic><topic>Astronomical models</topic><topic>Astronomy data modeling</topic><topic>Atmosphere</topic><topic>Atmospheric models</topic><topic>Chemical abundances</topic><topic>Deposition</topic><topic>Exoplanet atmospheres</topic><topic>Exoplanet atmospheric composition</topic><topic>Exoplanet formation</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Ice giant planets</topic><topic>Infrared spectroscopy</topic><topic>James Webb Space Telescope</topic><topic>Jupiter</topic><topic>Metallicity</topic><topic>Modelling</topic><topic>Molecular spectroscopy</topic><topic>Oxygen</topic><topic>Photochemical models</topic><topic>Photochemicals</topic><topic>Planet formation</topic><topic>Planetary atmospheres</topic><topic>Planetary composition</topic><topic>Planets</topic><topic>Protoplanetary disks</topic><topic>Ratios</topic><topic>Spectra</topic><topic>Stellar models</topic><topic>Sulfur</topic><topic>Sulfur dioxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crossfield, Ian J. M.</creatorcontrib><collection>IOP_英国物理学会OA刊</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Directory of Open Access Journals (DOAJ)</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crossfield, Ian J. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2023-07-01</date><risdate>2023</risdate><volume>952</volume><issue>1</issue><spage>L18</spage><pages>L18-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The newfound ability to detect SO
2
in exoplanet atmospheres presents an opportunity to measure sulfur abundances and so directly test between competing modes of planet formation. In contrast to carbon and oxygen, whose dominant molecules are frequently observed, sulfur is much less volatile and resides almost exclusively in solid form in protoplanetary disks. This dichotomy leads different models of planet formation to predict different compositions of gas giant planets. Whereas planetesimal-based models predict roughly stellar C/S and O/S ratios, pebble-accretion models more often predict superstellar ratios. To explore the detectability of SO
2
in transmission spectra and its ability to diagnose planet formation, we present a grid of atmospheric photochemical models and corresponding synthetic spectra for WASP-39b (where SO
2
has been detected). Our 3D grid contains 11
3
models (spanning 1–100× the solar abundance ratio of C, O, and S) for thermal profiles corresponding to the morning and evening terminators, as well as mean terminator transmission spectra. Our models show that for a WASP-39b-like O/H and C/H enhancement of ∼10× solar, SO
2
can only be seen for C/S and O/S ≲ 1.5× solar, and that WASP-39b’s reported SO
2
abundance of 1–10 ppm may be more consistent with planetesimal accretion than with pebble-accretion models (although some pebble models also manage to predict similarly low ratios). More extreme C/S and O/S ratios may be detectable in higher-metallicity atmospheres, suggesting that smaller and more metal-rich gas and ice giants may be particularly interesting targets for testing planet formation models. Future studies should explore the dependence of SO
2
on a wider array of planetary and stellar parameters, both for the prototypical SO
2
planet WASP-39b, as well as for other hot Jupiters and smaller gas giants.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ace35f</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2023-07, Vol.952 (1), p.L18 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_crossref_primary_10_3847_2041_8213_ace35f |
source | Directory of Open Access Journals (DOAJ); Institute of Physics IOPscience extra; IOP_英国物理学会OA刊; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | Abundance Accretion disks Astronomical models Astronomy data modeling Atmosphere Atmospheric models Chemical abundances Deposition Exoplanet atmospheres Exoplanet atmospheric composition Exoplanet formation Extrasolar planets Gas giant planets Ice giant planets Infrared spectroscopy James Webb Space Telescope Jupiter Metallicity Modelling Molecular spectroscopy Oxygen Photochemical models Photochemicals Planet formation Planetary atmospheres Planetary composition Planets Protoplanetary disks Ratios Spectra Stellar models Sulfur Sulfur dioxide |
title | Volatile-to-sulfur Ratios Can Recover a Gas Giant’s Accretion History |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A25%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Volatile-to-sulfur%20Ratios%20Can%20Recover%20a%20Gas%20Giant%E2%80%99s%20Accretion%20History&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Crossfield,%20Ian%20J.%20M.&rft.date=2023-07-01&rft.volume=952&rft.issue=1&rft.spage=L18&rft.pages=L18-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ace35f&rft_dat=%3Cproquest_cross%3E2841999464%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2841999464&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_105f001ddeef42b4a1958a535f831aef&rfr_iscdi=true |