Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares

The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2023-02, Vol.943 (2), p.L23
1. Verfasser: Kowalski, Adam F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L23
container_title Astrophysical journal. Letters
container_volume 943
creator Kowalski, Adam F.
description The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum with T ≈ 10 4 K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log 10 column mass/[g cm −2 ] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy above E ≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperatures T ≳ 12,000 K over the deep chromosphere with log 10 column mass/[g cm −2 ] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.
doi_str_mv 10.3847/2041-8213/acb144
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_acb144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_31d0f3d09d3d43ff94338965cf00e712</doaj_id><sourcerecordid>2771689458</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-48e9fffbb9f4a39e54095d42d58abbb15f08094d60977643c4b06c830dffe4e33</originalsourceid><addsrcrecordid>eNp9kTFv3DAMhY2gBZKm2TMKKNCpbiiLtqWxuSa5AAd0aDoLskTd6eCzXMkZ8u_jq4PrUnQhCeLxI8FXFNccvgqJ7U0FyEtZcXFjbMcRz4qLU-vdqYb6vPiQ8x6ggobLi8LfpuC2YdiyddjuSkdDDtMLu-vJTikO7JbMga3iXJqePSUz5DGmiZnBse9EI1vtUjzEPO4oBcvWZKYjKwzs50R9bxK7nwPlj8V7b_pMV2_5svh1f_e0WpebHw-Pq2-b0iK2U4mSlPe-65RHIxTVCKp2WLlamq7reO1BgkLXgGrbBoXFDhorBTjvCUmIy-Jx4bpo9npM4WDSi44m6D-NmLbapCnYnrTgDrxwoJxwKLxXKIRUTW09ALW8mlmfFtaY4u9nypPex-c0_yHrqm15IxXWclbBorIp5pzIn7Zy0Edn9PH1-miDXpyZR74sIyGOf5n_kX_-h9yM-17PN-tKbyqhR-fFK8SJm7Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2771689458</pqid></control><display><type>article</type><title>Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Kowalski, Adam F.</creator><creatorcontrib>Kowalski, Adam F.</creatorcontrib><description>The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum with T ≈ 10 4 K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log 10 column mass/[g cm −2 ] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy above E ≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperatures T ≳ 12,000 K over the deep chromosphere with log 10 column mass/[g cm −2 ] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/acb144</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Atmospheric models ; Beam injection ; Chromosphere ; Chromospheric heating ; Color temperature ; Continuum radiation ; Coronal electrons ; Electric fields ; Electron acceleration ; Electron beams ; Energy ; Heating ; Hydrodynamic models ; Langmuir waves ; Low altitude ; Near ultraviolet radiation ; Photosphere ; Power law ; Radiation ; Red dwarf stars ; Solar corona ; Solar flares ; Stellar atmospheres ; Stellar coronas ; Stellar flares</subject><ispartof>Astrophysical journal. Letters, 2023-02, Vol.943 (2), p.L23</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-48e9fffbb9f4a39e54095d42d58abbb15f08094d60977643c4b06c830dffe4e33</citedby><cites>FETCH-LOGICAL-c447t-48e9fffbb9f4a39e54095d42d58abbb15f08094d60977643c4b06c830dffe4e33</cites><orcidid>0000-0001-7458-1176</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/acb144/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38868,38890,53840,53867</link.rule.ids></links><search><creatorcontrib>Kowalski, Adam F.</creatorcontrib><title>Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum with T ≈ 10 4 K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log 10 column mass/[g cm −2 ] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy above E ≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperatures T ≳ 12,000 K over the deep chromosphere with log 10 column mass/[g cm −2 ] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.</description><subject>Atmospheric models</subject><subject>Beam injection</subject><subject>Chromosphere</subject><subject>Chromospheric heating</subject><subject>Color temperature</subject><subject>Continuum radiation</subject><subject>Coronal electrons</subject><subject>Electric fields</subject><subject>Electron acceleration</subject><subject>Electron beams</subject><subject>Energy</subject><subject>Heating</subject><subject>Hydrodynamic models</subject><subject>Langmuir waves</subject><subject>Low altitude</subject><subject>Near ultraviolet radiation</subject><subject>Photosphere</subject><subject>Power law</subject><subject>Radiation</subject><subject>Red dwarf stars</subject><subject>Solar corona</subject><subject>Solar flares</subject><subject>Stellar atmospheres</subject><subject>Stellar coronas</subject><subject>Stellar flares</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9kTFv3DAMhY2gBZKm2TMKKNCpbiiLtqWxuSa5AAd0aDoLskTd6eCzXMkZ8u_jq4PrUnQhCeLxI8FXFNccvgqJ7U0FyEtZcXFjbMcRz4qLU-vdqYb6vPiQ8x6ggobLi8LfpuC2YdiyddjuSkdDDtMLu-vJTikO7JbMga3iXJqePSUz5DGmiZnBse9EI1vtUjzEPO4oBcvWZKYjKwzs50R9bxK7nwPlj8V7b_pMV2_5svh1f_e0WpebHw-Pq2-b0iK2U4mSlPe-65RHIxTVCKp2WLlamq7reO1BgkLXgGrbBoXFDhorBTjvCUmIy-Jx4bpo9npM4WDSi44m6D-NmLbapCnYnrTgDrxwoJxwKLxXKIRUTW09ALW8mlmfFtaY4u9nypPex-c0_yHrqm15IxXWclbBorIp5pzIn7Zy0Edn9PH1-miDXpyZR74sIyGOf5n_kX_-h9yM-17PN-tKbyqhR-fFK8SJm7Y</recordid><startdate>20230201</startdate><enddate>20230201</enddate><creator>Kowalski, Adam F.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7458-1176</orcidid></search><sort><creationdate>20230201</creationdate><title>Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares</title><author>Kowalski, Adam F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-48e9fffbb9f4a39e54095d42d58abbb15f08094d60977643c4b06c830dffe4e33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Atmospheric models</topic><topic>Beam injection</topic><topic>Chromosphere</topic><topic>Chromospheric heating</topic><topic>Color temperature</topic><topic>Continuum radiation</topic><topic>Coronal electrons</topic><topic>Electric fields</topic><topic>Electron acceleration</topic><topic>Electron beams</topic><topic>Energy</topic><topic>Heating</topic><topic>Hydrodynamic models</topic><topic>Langmuir waves</topic><topic>Low altitude</topic><topic>Near ultraviolet radiation</topic><topic>Photosphere</topic><topic>Power law</topic><topic>Radiation</topic><topic>Red dwarf stars</topic><topic>Solar corona</topic><topic>Solar flares</topic><topic>Stellar atmospheres</topic><topic>Stellar coronas</topic><topic>Stellar flares</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalski, Adam F.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalski, Adam F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2023-02-01</date><risdate>2023</risdate><volume>943</volume><issue>2</issue><spage>L23</spage><pages>L23-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The optical and near-ultraviolet (NUV) continuum radiation in M-dwarf flares is thought to be the impulsive response of the lower stellar atmosphere to magnetic energy release and electron acceleration at coronal altitudes. This radiation is sometimes interpreted as evidence of a thermal photospheric spectrum with T ≈ 10 4 K. However, calculations show that standard solar flare coronal electron beams lose their energy in a thick target of gas in the upper and middle chromosphere (log 10 column mass/[g cm −2 ] ≲ −3). At larger beam injection fluxes, electric fields and instabilities are expected to further inhibit propagation to low altitudes. We show that recent numerical solutions of the time-dependent equations governing the power-law electrons and background coronal plasma (Langmuir and ion-acoustic) waves from Kontar et al. produce order-of-magnitude larger heating rates than those that occur in the deep chromosphere through standard solar flare electron beam power-law distributions. We demonstrate that the redistribution of beam energy above E ≳ 100 keV in this theory results in a local heating maximum that is similar to a radiative-hydrodynamic model with a large, low-energy cutoff and a hard power-law index. We use this semiempirical forward-modeling approach to produce opaque NUV and optical continua at gas temperatures T ≳ 12,000 K over the deep chromosphere with log 10 column mass/[g cm −2 ] of −1.2 to −2.3. These models explain the color temperatures and Balmer jump strengths in high-cadence M-dwarf flare observations, and they clarify the relation among atmospheric, radiation, and optical color temperatures in stellar flares.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/acb144</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7458-1176</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2023-02, Vol.943 (2), p.L23
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_acb144
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection
subjects Atmospheric models
Beam injection
Chromosphere
Chromospheric heating
Color temperature
Continuum radiation
Coronal electrons
Electric fields
Electron acceleration
Electron beams
Energy
Heating
Hydrodynamic models
Langmuir waves
Low altitude
Near ultraviolet radiation
Photosphere
Power law
Radiation
Red dwarf stars
Solar corona
Solar flares
Stellar atmospheres
Stellar coronas
Stellar flares
title Bridging High-density Electron Beam Coronal Transport and Deep Chromospheric Heating in Stellar Flares
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T01%3A16%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridging%20High-density%20Electron%20Beam%20Coronal%20Transport%20and%20Deep%20Chromospheric%20Heating%20in%20Stellar%20Flares&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Kowalski,%20Adam%20F.&rft.date=2023-02-01&rft.volume=943&rft.issue=2&rft.spage=L23&rft.pages=L23-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/acb144&rft_dat=%3Cproquest_cross%3E2771689458%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2771689458&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_31d0f3d09d3d43ff94338965cf00e712&rfr_iscdi=true