Formation of Moons and Equatorial Ridge around Top-shaped Asteroids after Surface Landslide
Top-shaped asteroids have been observed among near-Earth asteroids. About half of them are reported to have moons (on the order of ∼1 wt.% of the top-shaped primary) and many of them have an equatorial ridge. A recent study has shown that the enigmatic top-shaped figure of asteroids (e.g., Ryugu, Be...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2022-10, Vol.937 (2), p.L36 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Top-shaped asteroids have been observed among near-Earth asteroids. About half of them are reported to have moons (on the order of ∼1 wt.% of the top-shaped primary) and many of them have an equatorial ridge. A recent study has shown that the enigmatic top-shaped figure of asteroids (e.g., Ryugu, Bennu, and Didymos) could result from an axisymmetric landslide of the primary during a fast spin-up near the breakup rotation period. Such a landslide would inevitably form a particulate disk around an asteroid with a short timescale (∼3 hr). However, the long-term full dynamical evolution is not investigated. Here, we perform a continuous simulation (∼700 hr) that investigates the sequence of events from the surface landslide that forms a top-shaped asteroid and a particulate disk to disk evolution. We show that the disk quickly spreads and produces moons (within ∼300 hr). The mass of the formed moon is consistent with what is observed around the top-shaped asteroids. We also demonstrate that an equatorial ridge is naturally formed because a fraction of the disk particles re-accretes selectively onto the equatorial region of the primary. We envision that Ryugu and Bennu could once have an ancient moon that was later lost due to a successive moon’s orbital evolution. Alternatively, at a top-shaped asteroid that has a moon, such as Didymos, no significant orbital evolution of the moon has occurred that would result in its loss. Our study would also be qualitatively applicable to any rubble-pile asteroids near the breakup rotation period. |
---|---|
ISSN: | 2041-8205 2041-8213 |
DOI: | 10.3847/2041-8213/ac922d |