Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations

We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ )....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2022-10, Vol.937 (2), p.L29
Hauptverfasser: Adhikari, L., Zank, G. P., Telloni, D., Zhao, L.-L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L29
container_title Astrophysical journal. Letters
container_volume 937
creator Adhikari, L.
Zank, G. P.
Telloni, D.
Zhao, L.-L.
description We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.
doi_str_mv 10.3847/2041-8213/ac91c6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_ac91c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718674932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURgdRsFb3LgNujb3zk2SylKJVaWlBXQ8zkxmZGjN1JhW68x18Q5_EhEhdubqXy_m-CwehcwxXlLNiQoDhlBNMJ1KXWOcHaLQ_He53yI7RSYxrAAI55iM0W_jK1K55SbxNHrxr2mQlw6sJyaOvZUhWwSvz_fm1MK2Lk-G2DMq1HbFU0YQP2TrfxFN0ZGUdzdnvHKPn25un6V06X87up9fzVNMM2rTkFGNOmMxJZUvIcigJzbQtCOfWMKuY1hnOpaqUAlNKgysNhGKGqbGyUnSMLobeTfDvWxNbsfbb0HQvBSkwzwtWUtJRMFA6-BiDsWIT3JsMO4FB9LpE70P0bsSgq4tcDhHnN3-d_-I_-3przA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718674932</pqid></control><display><type>article</type><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</creatorcontrib><description>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ac91c6</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Charged particles ; Corona ; Density ; Helicity ; Heliosphere ; Interplanetary turbulence ; Magnetic fields ; Metis ; Modelling ; Quadratures ; Radial flow ; Remote observing ; Residual energy ; Solar corona ; Solar Orbiter (ESA) ; Solar orbits ; Solar probes ; Solar wind ; Solar wind density ; Solar wind speed ; The Sun ; Wind speed</subject><ispartof>Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L29</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</citedby><cites>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</cites><orcidid>0000-0002-6710-8142 ; 0000-0002-4299-0490 ; 0000-0002-4642-6192 ; 0000-0003-1549-5256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac91c6/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</description><subject>Charged particles</subject><subject>Corona</subject><subject>Density</subject><subject>Helicity</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Metis</subject><subject>Modelling</subject><subject>Quadratures</subject><subject>Radial flow</subject><subject>Remote observing</subject><subject>Residual energy</subject><subject>Solar corona</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind density</subject><subject>Solar wind speed</subject><subject>The Sun</subject><subject>Wind speed</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1Kw0AURgdRsFb3LgNujb3zk2SylKJVaWlBXQ8zkxmZGjN1JhW68x18Q5_EhEhdubqXy_m-CwehcwxXlLNiQoDhlBNMJ1KXWOcHaLQ_He53yI7RSYxrAAI55iM0W_jK1K55SbxNHrxr2mQlw6sJyaOvZUhWwSvz_fm1MK2Lk-G2DMq1HbFU0YQP2TrfxFN0ZGUdzdnvHKPn25un6V06X87up9fzVNMM2rTkFGNOmMxJZUvIcigJzbQtCOfWMKuY1hnOpaqUAlNKgysNhGKGqbGyUnSMLobeTfDvWxNbsfbb0HQvBSkwzwtWUtJRMFA6-BiDsWIT3JsMO4FB9LpE70P0bsSgq4tcDhHnN3-d_-I_-3przA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Telloni, D.</creator><creator>Zhao, L.-L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid></search><sort><creationdate>20221001</creationdate><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><author>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charged particles</topic><topic>Corona</topic><topic>Density</topic><topic>Helicity</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Metis</topic><topic>Modelling</topic><topic>Quadratures</topic><topic>Radial flow</topic><topic>Remote observing</topic><topic>Residual energy</topic><topic>Solar corona</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind density</topic><topic>Solar wind speed</topic><topic>The Sun</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Telloni, D.</au><au>Zhao, L.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>937</volume><issue>2</issue><spage>L29</spage><pages>L29-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ ). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s −1 , and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s −1 . We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4 R ⊙ and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ac91c6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L29
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_ac91c6
source Institute of Physics IOPscience extra; IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Charged particles
Corona
Density
Helicity
Heliosphere
Interplanetary turbulence
Magnetic fields
Metis
Modelling
Quadratures
Radial flow
Remote observing
Residual energy
Solar corona
Solar Orbiter (ESA)
Solar orbits
Solar probes
Solar wind
Solar wind density
Solar wind speed
The Sun
Wind speed
title Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Joint%20Parker%20Solar%20Probe%E2%80%93Metis/Solar%20Orbiter%20Observations&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Adhikari,%20L.&rft.date=2022-10-01&rft.volume=937&rft.issue=2&rft.spage=L29&rft.pages=L29-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ac91c6&rft_dat=%3Cproquest_cross%3E2718674932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718674932&rft_id=info:pmid/&rfr_iscdi=true