Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations
We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3 R ⊙ ) to the very inner heliosphere (23.2 R ⊙ )....
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2022-10, Vol.937 (2), p.L29 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L29 |
container_title | Astrophysical journal. Letters |
container_volume | 937 |
creator | Adhikari, L. Zank, G. P. Telloni, D. Zhao, L.-L. |
description | We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3
R
⊙
) to the very inner heliosphere (23.2
R
⊙
). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s
−1
, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s
−1
. We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4
R
⊙
and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP. |
doi_str_mv | 10.3847/2041-8213/ac91c6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_ac91c6</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2718674932</sourcerecordid><originalsourceid>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AURgdRsFb3LgNujb3zk2SylKJVaWlBXQ8zkxmZGjN1JhW68x18Q5_EhEhdubqXy_m-CwehcwxXlLNiQoDhlBNMJ1KXWOcHaLQ_He53yI7RSYxrAAI55iM0W_jK1K55SbxNHrxr2mQlw6sJyaOvZUhWwSvz_fm1MK2Lk-G2DMq1HbFU0YQP2TrfxFN0ZGUdzdnvHKPn25un6V06X87up9fzVNMM2rTkFGNOmMxJZUvIcigJzbQtCOfWMKuY1hnOpaqUAlNKgysNhGKGqbGyUnSMLobeTfDvWxNbsfbb0HQvBSkwzwtWUtJRMFA6-BiDsWIT3JsMO4FB9LpE70P0bsSgq4tcDhHnN3-d_-I_-3przA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718674932</pqid></control><display><type>article</type><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><source>Institute of Physics IOPscience extra</source><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</creator><creatorcontrib>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</creatorcontrib><description>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3
R
⊙
) to the very inner heliosphere (23.2
R
⊙
). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s
−1
, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s
−1
. We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4
R
⊙
and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ac91c6</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Charged particles ; Corona ; Density ; Helicity ; Heliosphere ; Interplanetary turbulence ; Magnetic fields ; Metis ; Modelling ; Quadratures ; Radial flow ; Remote observing ; Residual energy ; Solar corona ; Solar Orbiter (ESA) ; Solar orbits ; Solar probes ; Solar wind ; Solar wind density ; Solar wind speed ; The Sun ; Wind speed</subject><ispartof>Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L29</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</citedby><cites>FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</cites><orcidid>0000-0002-6710-8142 ; 0000-0002-4299-0490 ; 0000-0002-4642-6192 ; 0000-0003-1549-5256</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac91c6/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3
R
⊙
) to the very inner heliosphere (23.2
R
⊙
). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s
−1
, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s
−1
. We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4
R
⊙
and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</description><subject>Charged particles</subject><subject>Corona</subject><subject>Density</subject><subject>Helicity</subject><subject>Heliosphere</subject><subject>Interplanetary turbulence</subject><subject>Magnetic fields</subject><subject>Metis</subject><subject>Modelling</subject><subject>Quadratures</subject><subject>Radial flow</subject><subject>Remote observing</subject><subject>Residual energy</subject><subject>Solar corona</subject><subject>Solar Orbiter (ESA)</subject><subject>Solar orbits</subject><subject>Solar probes</subject><subject>Solar wind</subject><subject>Solar wind density</subject><subject>Solar wind speed</subject><subject>The Sun</subject><subject>Wind speed</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kM1Kw0AURgdRsFb3LgNujb3zk2SylKJVaWlBXQ8zkxmZGjN1JhW68x18Q5_EhEhdubqXy_m-CwehcwxXlLNiQoDhlBNMJ1KXWOcHaLQ_He53yI7RSYxrAAI55iM0W_jK1K55SbxNHrxr2mQlw6sJyaOvZUhWwSvz_fm1MK2Lk-G2DMq1HbFU0YQP2TrfxFN0ZGUdzdnvHKPn25un6V06X87up9fzVNMM2rTkFGNOmMxJZUvIcigJzbQtCOfWMKuY1hnOpaqUAlNKgysNhGKGqbGyUnSMLobeTfDvWxNbsfbb0HQvBSkwzwtWUtJRMFA6-BiDsWIT3JsMO4FB9LpE70P0bsSgq4tcDhHnN3-d_-I_-3przA</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Adhikari, L.</creator><creator>Zank, G. P.</creator><creator>Telloni, D.</creator><creator>Zhao, L.-L.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid></search><sort><creationdate>20221001</creationdate><title>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</title><author>Adhikari, L. ; Zank, G. P. ; Telloni, D. ; Zhao, L.-L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c350t-98311824a62df905609235cf7288fe4fb4cc516abdbb0e9ae1dc0231413efadb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Charged particles</topic><topic>Corona</topic><topic>Density</topic><topic>Helicity</topic><topic>Heliosphere</topic><topic>Interplanetary turbulence</topic><topic>Magnetic fields</topic><topic>Metis</topic><topic>Modelling</topic><topic>Quadratures</topic><topic>Radial flow</topic><topic>Remote observing</topic><topic>Residual energy</topic><topic>Solar corona</topic><topic>Solar Orbiter (ESA)</topic><topic>Solar orbits</topic><topic>Solar probes</topic><topic>Solar wind</topic><topic>Solar wind density</topic><topic>Solar wind speed</topic><topic>The Sun</topic><topic>Wind speed</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Adhikari, L.</creatorcontrib><creatorcontrib>Zank, G. P.</creatorcontrib><creatorcontrib>Telloni, D.</creatorcontrib><creatorcontrib>Zhao, L.-L.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Adhikari, L.</au><au>Zank, G. P.</au><au>Telloni, D.</au><au>Zhao, L.-L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>937</volume><issue>2</issue><spage>L29</spage><pages>L29-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We present the first theoretical modeling of joint Parker Solar Probe (PSP)–Metis/Solar Orbiter (SolO) quadrature observations. The combined observations describe the evolution of a slow solar wind plasma parcel from the extended solar corona (3.5–6.3
R
⊙
) to the very inner heliosphere (23.2
R
⊙
). The Metis/SolO instrument remotely measures the solar wind speed finding a range from 96 to 201 km s
−1
, and PSP measures the solar wind plasma in situ, observing a radial speed of 219.34 km s
−1
. We find theoretically and observationally that the solar wind speed accelerates rapidly within 3.3–4
R
⊙
and then increases more gradually with distance. Similarly, we find that the theoretical solar wind density is consistent with the remotely and in-situ observed solar wind density. The normalized cross helicity and normalized residual energy observed by PSP are 0.96 and −0.07, respectively, indicating that the slow solar wind is very Alfvénic. The theoretical NI/slab results are very similar to PSP measurements, which is a consequence of the highly magnetic field-aligned radial flow ensuring that PSP can measure slab fluctuations and not 2D ones. Finally, we calculate the theoretical 2D and slab turbulence pressure, finding that the theoretical slab pressure is very similar to that observed by PSP.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ac91c6</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-6710-8142</orcidid><orcidid>https://orcid.org/0000-0002-4299-0490</orcidid><orcidid>https://orcid.org/0000-0002-4642-6192</orcidid><orcidid>https://orcid.org/0000-0003-1549-5256</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L29 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_crossref_primary_10_3847_2041_8213_ac91c6 |
source | Institute of Physics IOPscience extra; IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Charged particles Corona Density Helicity Heliosphere Interplanetary turbulence Magnetic fields Metis Modelling Quadratures Radial flow Remote observing Residual energy Solar corona Solar Orbiter (ESA) Solar orbits Solar probes Solar wind Solar wind density Solar wind speed The Sun Wind speed |
title | Modeling of Joint Parker Solar Probe–Metis/Solar Orbiter Observations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T05%3A36%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Joint%20Parker%20Solar%20Probe%E2%80%93Metis/Solar%20Orbiter%20Observations&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Adhikari,%20L.&rft.date=2022-10-01&rft.volume=937&rft.issue=2&rft.spage=L29&rft.pages=L29-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ac91c6&rft_dat=%3Cproquest_cross%3E2718674932%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718674932&rft_id=info:pmid/&rfr_iscdi=true |