Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields

We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2022-10, Vol.937 (2), p.L37
Hauptverfasser: Fujii, Yuri I., Kimura, Shigeo S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L37
container_title Astrophysical journal. Letters
container_volume 937
creator Fujii, Yuri I.
Kimura, Shigeo S.
description We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times lower than the ISM value. Then, we compute the attenuation of cosmic rays in protoplanetary disks. The magnetic fields in the disk are stretched to the azimuthal directions, and cosmic rays need to detour while propagating to the midplane. Our results show that the detouring effectively enhances the column density by about two orders of magnitude. We employ a typical ionization rate by cosmic rays in diffuse ISM, which is considered too high to be consistent with observations of protoplanetary disks, and find that the cosmic rays are significantly shielded at the midplane. In the case of the disk around IM Lup, the midplane ionization rate is very low for r ≲ 100 au, while the value is as large as a diffuse ISM in the outer radii. Our results are consistent with the recent Atacama Large Millimeter/submillimeter Array observation that indicates the radial gradient in the cosmic-ray ionization rate. The high ionization rate in the outer radii of disks may activate the magnetorotational instability that was thought to be suppressed due to ambipolar diffusion. These results will have a strong influence on the dynamical and chemical evolutions of protoplanetary disks.
doi_str_mv 10.3847/2041-8213/ac86c2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_ac86c2</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2719746999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c491t-38ba6cd7f99c6411fbe2b59caa1fe553f42c74e42324eab7639955894eec2a023</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKt3jwHBk2vztR85SrVaqFSqnkM2m7Wp282apEj99aas1IteZoaZZ95hXgDOMbqmBctHBDGcFATTkVRFpsgBGOxbh_sapcfgxPsVQgRluBiA-dj6tVHJQm7h1LbmSwZjW7iQQUPTwidng-0a2eog3RbeGv_u4acJS_i81NLpCj7Ktzg0Ck6Mbip_Co5q2Xh99pOH4HVy9zJ-SGbz--n4ZpYoxnFIaFHKTFV5zbnKGMZ1qUmZciUlrnWa0poRlTPNCCVMyzLPKOdpWnCmtSISEToEF71u5-zHRvsgVnbj2nhSkBzznGWc80ihnlLOeu90LTpn1vETgZHY2SZ2voidR6K3La5c9ivGdr-asls1gtPIi1mMXVVH8OoP8F_dbySNex4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2719746999</pqid></control><display><type>article</type><title>Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>IOPscience extra</source><source>Alma/SFX Local Collection</source><creator>Fujii, Yuri I. ; Kimura, Shigeo S.</creator><creatorcontrib>Fujii, Yuri I. ; Kimura, Shigeo S.</creatorcontrib><description>We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times lower than the ISM value. Then, we compute the attenuation of cosmic rays in protoplanetary disks. The magnetic fields in the disk are stretched to the azimuthal directions, and cosmic rays need to detour while propagating to the midplane. Our results show that the detouring effectively enhances the column density by about two orders of magnitude. We employ a typical ionization rate by cosmic rays in diffuse ISM, which is considered too high to be consistent with observations of protoplanetary disks, and find that the cosmic rays are significantly shielded at the midplane. In the case of the disk around IM Lup, the midplane ionization rate is very low for r ≲ 100 au, while the value is as large as a diffuse ISM in the outer radii. Our results are consistent with the recent Atacama Large Millimeter/submillimeter Array observation that indicates the radial gradient in the cosmic-ray ionization rate. The high ionization rate in the outer radii of disks may activate the magnetorotational instability that was thought to be suppressed due to ambipolar diffusion. These results will have a strong influence on the dynamical and chemical evolutions of protoplanetary disks.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/ac86c2</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Ambipolar diffusion ; Cosmic ray ionization ; Cosmic ray propagation ; Cosmic ray showers ; Cosmic rays ; Density ; Interstellar matter ; Interstellar medium ; Ionization ; Magnetic effects ; Magnetic fields ; Planet formation ; Protoplanetary disks ; Radio telescopes ; Space telescopes</subject><ispartof>Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L37</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c491t-38ba6cd7f99c6411fbe2b59caa1fe553f42c74e42324eab7639955894eec2a023</citedby><cites>FETCH-LOGICAL-c491t-38ba6cd7f99c6411fbe2b59caa1fe553f42c74e42324eab7639955894eec2a023</cites><orcidid>0000-0003-2579-7266 ; 0000-0002-3648-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/ac86c2/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,27901,27902,38845,38867,53815,53842</link.rule.ids></links><search><creatorcontrib>Fujii, Yuri I.</creatorcontrib><creatorcontrib>Kimura, Shigeo S.</creatorcontrib><title>Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times lower than the ISM value. Then, we compute the attenuation of cosmic rays in protoplanetary disks. The magnetic fields in the disk are stretched to the azimuthal directions, and cosmic rays need to detour while propagating to the midplane. Our results show that the detouring effectively enhances the column density by about two orders of magnitude. We employ a typical ionization rate by cosmic rays in diffuse ISM, which is considered too high to be consistent with observations of protoplanetary disks, and find that the cosmic rays are significantly shielded at the midplane. In the case of the disk around IM Lup, the midplane ionization rate is very low for r ≲ 100 au, while the value is as large as a diffuse ISM in the outer radii. Our results are consistent with the recent Atacama Large Millimeter/submillimeter Array observation that indicates the radial gradient in the cosmic-ray ionization rate. The high ionization rate in the outer radii of disks may activate the magnetorotational instability that was thought to be suppressed due to ambipolar diffusion. These results will have a strong influence on the dynamical and chemical evolutions of protoplanetary disks.</description><subject>Ambipolar diffusion</subject><subject>Cosmic ray ionization</subject><subject>Cosmic ray propagation</subject><subject>Cosmic ray showers</subject><subject>Cosmic rays</subject><subject>Density</subject><subject>Interstellar matter</subject><subject>Interstellar medium</subject><subject>Ionization</subject><subject>Magnetic effects</subject><subject>Magnetic fields</subject><subject>Planet formation</subject><subject>Protoplanetary disks</subject><subject>Radio telescopes</subject><subject>Space telescopes</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kE1LAzEQhoMoWKt3jwHBk2vztR85SrVaqFSqnkM2m7Wp282apEj99aas1IteZoaZZ95hXgDOMbqmBctHBDGcFATTkVRFpsgBGOxbh_sapcfgxPsVQgRluBiA-dj6tVHJQm7h1LbmSwZjW7iQQUPTwidng-0a2eog3RbeGv_u4acJS_i81NLpCj7Ktzg0Ck6Mbip_Co5q2Xh99pOH4HVy9zJ-SGbz--n4ZpYoxnFIaFHKTFV5zbnKGMZ1qUmZciUlrnWa0poRlTPNCCVMyzLPKOdpWnCmtSISEToEF71u5-zHRvsgVnbj2nhSkBzznGWc80ihnlLOeu90LTpn1vETgZHY2SZ2voidR6K3La5c9ivGdr-asls1gtPIi1mMXVVH8OoP8F_dbySNex4</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Fujii, Yuri I.</creator><creator>Kimura, Shigeo S.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2579-7266</orcidid><orcidid>https://orcid.org/0000-0002-3648-0507</orcidid></search><sort><creationdate>20221001</creationdate><title>Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields</title><author>Fujii, Yuri I. ; Kimura, Shigeo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c491t-38ba6cd7f99c6411fbe2b59caa1fe553f42c74e42324eab7639955894eec2a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ambipolar diffusion</topic><topic>Cosmic ray ionization</topic><topic>Cosmic ray propagation</topic><topic>Cosmic ray showers</topic><topic>Cosmic rays</topic><topic>Density</topic><topic>Interstellar matter</topic><topic>Interstellar medium</topic><topic>Ionization</topic><topic>Magnetic effects</topic><topic>Magnetic fields</topic><topic>Planet formation</topic><topic>Protoplanetary disks</topic><topic>Radio telescopes</topic><topic>Space telescopes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fujii, Yuri I.</creatorcontrib><creatorcontrib>Kimura, Shigeo S.</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fujii, Yuri I.</au><au>Kimura, Shigeo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2022-10-01</date><risdate>2022</risdate><volume>937</volume><issue>2</issue><spage>L37</spage><pages>L37-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>We investigate the effects of magnetic-field configurations on the ionization rate by cosmic rays in protoplanetary disks. First, we consider cosmic-ray propagation from the interstellar medium (ISM) to the protoplanetary disks and showed that the cosmic-ray density around the disk should be 2 times lower than the ISM value. Then, we compute the attenuation of cosmic rays in protoplanetary disks. The magnetic fields in the disk are stretched to the azimuthal directions, and cosmic rays need to detour while propagating to the midplane. Our results show that the detouring effectively enhances the column density by about two orders of magnitude. We employ a typical ionization rate by cosmic rays in diffuse ISM, which is considered too high to be consistent with observations of protoplanetary disks, and find that the cosmic rays are significantly shielded at the midplane. In the case of the disk around IM Lup, the midplane ionization rate is very low for r ≲ 100 au, while the value is as large as a diffuse ISM in the outer radii. Our results are consistent with the recent Atacama Large Millimeter/submillimeter Array observation that indicates the radial gradient in the cosmic-ray ionization rate. The high ionization rate in the outer radii of disks may activate the magnetorotational instability that was thought to be suppressed due to ambipolar diffusion. These results will have a strong influence on the dynamical and chemical evolutions of protoplanetary disks.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/ac86c2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-2579-7266</orcidid><orcidid>https://orcid.org/0000-0002-3648-0507</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2022-10, Vol.937 (2), p.L37
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_ac86c2
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; IOPscience extra; Alma/SFX Local Collection
subjects Ambipolar diffusion
Cosmic ray ionization
Cosmic ray propagation
Cosmic ray showers
Cosmic rays
Density
Interstellar matter
Interstellar medium
Ionization
Magnetic effects
Magnetic fields
Planet formation
Protoplanetary disks
Radio telescopes
Space telescopes
title Cosmic-Ray Ionization Rate in Protoplanetary Disks with Sheared Magnetic Fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T10%3A32%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cosmic-Ray%20Ionization%20Rate%20in%20Protoplanetary%20Disks%20with%20Sheared%20Magnetic%20Fields&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Fujii,%20Yuri%20I.&rft.date=2022-10-01&rft.volume=937&rft.issue=2&rft.spage=L37&rft.pages=L37-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/ac86c2&rft_dat=%3Cproquest_cross%3E2719746999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2719746999&rft_id=info:pmid/&rfr_iscdi=true