The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources

Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-05, Vol.912 (2), p.L23
Hauptverfasser: Román-Garza, Jaime, Bavera, Simone S., Fragos, Tassos, Zapartas, Emmanouil, Misra, Devina, Andrews, Jeff, Coughlin, Scotty, Dotter, Aaron, Kovlakas, Konstantinos, Serra, Juan Gabriel, Qin, Ying, Rocha, Kyle A., Tran, Nam Hai
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page L23
container_title Astrophysical journal. Letters
container_volume 912
creator Román-Garza, Jaime
Bavera, Simone S.
Fragos, Tassos
Zapartas, Emmanouil
Misra, Devina
Andrews, Jeff
Coughlin, Scotty
Dotter, Aaron
Kovlakas, Konstantinos
Serra, Juan Gabriel
Qin, Ying
Rocha, Kyle A.
Tran, Nam Hai
description Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr −1 ), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr −1 , with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.
doi_str_mv 10.3847/2041-8213/abf42c
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_abf42c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524936675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwHBk3X51SY96lAnbE7cPIc0TV1n1tSkFfbf21LRix4e7_H4fL_v8QXgHKNrKhifEMRwJAimE5UVjOgDMPpZHf7MKD4GJyFsESIowWIEwnpj4IuzBroCTp03kXbWqjoY-LzZh1IHWFaw6aBlFoz_VFlpy2bf07dW6Xc467VPpm28q-CqUR4ujH8zPkAV4KK1TbkzIZiqW8GVa7024RQcFcoGc_bdx-D1_m49nUXz5cPj9GYeaSpwE6kiYYYRpTFPCsqVEohyroquBOKMUMaxQLHJWKooinMlcqpTHuM0j1EmCB2Di8G39u6jNaGR2-6BqjspSUxYSpOExx2FBkp7F4I3hax9uVN-LzGSfbSyz072Ocoh2k5yOUhKV_96qnprZYqJJHJOqKzzogOv_gD_9f0CbOOHhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524936675</pqid></control><display><type>article</type><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><source>IOP Publishing Free Content</source><creator>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</creator><creatorcontrib>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</creatorcontrib><description>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr −1 ), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr −1 , with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abf42c</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Binary stars ; Black holes ; Density ; Equations of state ; Gravitational waves ; Massive stars ; Neutron stars ; Neutrons ; Simulation ; Star mergers ; Supernova</subject><ispartof>Astrophysical journal. Letters, 2021-05, Vol.912 (2), p.L23</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</citedby><cites>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</cites><orcidid>0000-0003-3684-964X ; 0000-0002-5962-4796 ; 0000-0002-2956-8367 ; 0000-0003-1474-1523 ; 0000-0002-3439-0321 ; 0000-0003-4260-960X ; 0000-0001-5261-3923 ; 0000-0002-0403-4211 ; 0000-0002-7464-498X ; 0000-0003-4474-6528 ; 0000-0002-4442-5700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf42c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf42c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Román-Garza, Jaime</creatorcontrib><creatorcontrib>Bavera, Simone S.</creatorcontrib><creatorcontrib>Fragos, Tassos</creatorcontrib><creatorcontrib>Zapartas, Emmanouil</creatorcontrib><creatorcontrib>Misra, Devina</creatorcontrib><creatorcontrib>Andrews, Jeff</creatorcontrib><creatorcontrib>Coughlin, Scotty</creatorcontrib><creatorcontrib>Dotter, Aaron</creatorcontrib><creatorcontrib>Kovlakas, Konstantinos</creatorcontrib><creatorcontrib>Serra, Juan Gabriel</creatorcontrib><creatorcontrib>Qin, Ying</creatorcontrib><creatorcontrib>Rocha, Kyle A.</creatorcontrib><creatorcontrib>Tran, Nam Hai</creatorcontrib><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr −1 ), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr −1 , with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</description><subject>Binary stars</subject><subject>Black holes</subject><subject>Density</subject><subject>Equations of state</subject><subject>Gravitational waves</subject><subject>Massive stars</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Simulation</subject><subject>Star mergers</subject><subject>Supernova</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwHBk3X51SY96lAnbE7cPIc0TV1n1tSkFfbf21LRix4e7_H4fL_v8QXgHKNrKhifEMRwJAimE5UVjOgDMPpZHf7MKD4GJyFsESIowWIEwnpj4IuzBroCTp03kXbWqjoY-LzZh1IHWFaw6aBlFoz_VFlpy2bf07dW6Xc467VPpm28q-CqUR4ujH8zPkAV4KK1TbkzIZiqW8GVa7024RQcFcoGc_bdx-D1_m49nUXz5cPj9GYeaSpwE6kiYYYRpTFPCsqVEohyroquBOKMUMaxQLHJWKooinMlcqpTHuM0j1EmCB2Di8G39u6jNaGR2-6BqjspSUxYSpOExx2FBkp7F4I3hax9uVN-LzGSfbSyz072Ocoh2k5yOUhKV_96qnprZYqJJHJOqKzzogOv_gD_9f0CbOOHhA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Román-Garza, Jaime</creator><creator>Bavera, Simone S.</creator><creator>Fragos, Tassos</creator><creator>Zapartas, Emmanouil</creator><creator>Misra, Devina</creator><creator>Andrews, Jeff</creator><creator>Coughlin, Scotty</creator><creator>Dotter, Aaron</creator><creator>Kovlakas, Konstantinos</creator><creator>Serra, Juan Gabriel</creator><creator>Qin, Ying</creator><creator>Rocha, Kyle A.</creator><creator>Tran, Nam Hai</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3684-964X</orcidid><orcidid>https://orcid.org/0000-0002-5962-4796</orcidid><orcidid>https://orcid.org/0000-0002-2956-8367</orcidid><orcidid>https://orcid.org/0000-0003-1474-1523</orcidid><orcidid>https://orcid.org/0000-0002-3439-0321</orcidid><orcidid>https://orcid.org/0000-0003-4260-960X</orcidid><orcidid>https://orcid.org/0000-0001-5261-3923</orcidid><orcidid>https://orcid.org/0000-0002-0403-4211</orcidid><orcidid>https://orcid.org/0000-0002-7464-498X</orcidid><orcidid>https://orcid.org/0000-0003-4474-6528</orcidid><orcidid>https://orcid.org/0000-0002-4442-5700</orcidid></search><sort><creationdate>20210501</creationdate><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><author>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary stars</topic><topic>Black holes</topic><topic>Density</topic><topic>Equations of state</topic><topic>Gravitational waves</topic><topic>Massive stars</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Simulation</topic><topic>Star mergers</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román-Garza, Jaime</creatorcontrib><creatorcontrib>Bavera, Simone S.</creatorcontrib><creatorcontrib>Fragos, Tassos</creatorcontrib><creatorcontrib>Zapartas, Emmanouil</creatorcontrib><creatorcontrib>Misra, Devina</creatorcontrib><creatorcontrib>Andrews, Jeff</creatorcontrib><creatorcontrib>Coughlin, Scotty</creatorcontrib><creatorcontrib>Dotter, Aaron</creatorcontrib><creatorcontrib>Kovlakas, Konstantinos</creatorcontrib><creatorcontrib>Serra, Juan Gabriel</creatorcontrib><creatorcontrib>Qin, Ying</creatorcontrib><creatorcontrib>Rocha, Kyle A.</creatorcontrib><creatorcontrib>Tran, Nam Hai</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Román-Garza, Jaime</au><au>Bavera, Simone S.</au><au>Fragos, Tassos</au><au>Zapartas, Emmanouil</au><au>Misra, Devina</au><au>Andrews, Jeff</au><au>Coughlin, Scotty</au><au>Dotter, Aaron</au><au>Kovlakas, Konstantinos</au><au>Serra, Juan Gabriel</au><au>Qin, Ying</au><au>Rocha, Kyle A.</au><au>Tran, Nam Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>912</volume><issue>2</issue><spage>L23</spage><pages>L23-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr −1 ), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr −1 , with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/abf42c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3684-964X</orcidid><orcidid>https://orcid.org/0000-0002-5962-4796</orcidid><orcidid>https://orcid.org/0000-0002-2956-8367</orcidid><orcidid>https://orcid.org/0000-0003-1474-1523</orcidid><orcidid>https://orcid.org/0000-0002-3439-0321</orcidid><orcidid>https://orcid.org/0000-0003-4260-960X</orcidid><orcidid>https://orcid.org/0000-0001-5261-3923</orcidid><orcidid>https://orcid.org/0000-0002-0403-4211</orcidid><orcidid>https://orcid.org/0000-0002-7464-498X</orcidid><orcidid>https://orcid.org/0000-0003-4474-6528</orcidid><orcidid>https://orcid.org/0000-0002-4442-5700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2021-05, Vol.912 (2), p.L23
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_abf42c
source IOP Publishing Free Content
subjects Binary stars
Black holes
Density
Equations of state
Gravitational waves
Massive stars
Neutron stars
Neutrons
Simulation
Star mergers
Supernova
title The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Core-collapse%20Physics%20in%20the%20Observability%20of%20Black%20Hole%20Neutron%20Star%20Mergers%20as%20Multimessenger%20Sources&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Rom%C3%A1n-Garza,%20Jaime&rft.date=2021-05-01&rft.volume=912&rft.issue=2&rft.spage=L23&rft.pages=L23-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abf42c&rft_dat=%3Cproquest_O3W%3E2524936675%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524936675&rft_id=info:pmid/&rfr_iscdi=true