The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources
Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hol...
Gespeichert in:
Veröffentlicht in: | Astrophysical journal. Letters 2021-05, Vol.912 (2), p.L23 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | L23 |
container_title | Astrophysical journal. Letters |
container_volume | 912 |
creator | Román-Garza, Jaime Bavera, Simone S. Fragos, Tassos Zapartas, Emmanouil Misra, Devina Andrews, Jeff Coughlin, Scotty Dotter, Aaron Kovlakas, Konstantinos Serra, Juan Gabriel Qin, Ying Rocha, Kyle A. Tran, Nam Hai |
description | Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr
−1
), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr
−1
, with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes. |
doi_str_mv | 10.3847/2041-8213/abf42c |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_abf42c</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2524936675</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd3jwHBk3X51SY96lAnbE7cPIc0TV1n1tSkFfbf21LRix4e7_H4fL_v8QXgHKNrKhifEMRwJAimE5UVjOgDMPpZHf7MKD4GJyFsESIowWIEwnpj4IuzBroCTp03kXbWqjoY-LzZh1IHWFaw6aBlFoz_VFlpy2bf07dW6Xc467VPpm28q-CqUR4ujH8zPkAV4KK1TbkzIZiqW8GVa7024RQcFcoGc_bdx-D1_m49nUXz5cPj9GYeaSpwE6kiYYYRpTFPCsqVEohyroquBOKMUMaxQLHJWKooinMlcqpTHuM0j1EmCB2Di8G39u6jNaGR2-6BqjspSUxYSpOExx2FBkp7F4I3hax9uVN-LzGSfbSyz072Ocoh2k5yOUhKV_96qnprZYqJJHJOqKzzogOv_gD_9f0CbOOHhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2524936675</pqid></control><display><type>article</type><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><source>IOP Publishing Free Content</source><creator>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</creator><creatorcontrib>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</creatorcontrib><description>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr
−1
), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr
−1
, with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abf42c</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Binary stars ; Black holes ; Density ; Equations of state ; Gravitational waves ; Massive stars ; Neutron stars ; Neutrons ; Simulation ; Star mergers ; Supernova</subject><ispartof>Astrophysical journal. Letters, 2021-05, Vol.912 (2), p.L23</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing May 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</citedby><cites>FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</cites><orcidid>0000-0003-3684-964X ; 0000-0002-5962-4796 ; 0000-0002-2956-8367 ; 0000-0003-1474-1523 ; 0000-0002-3439-0321 ; 0000-0003-4260-960X ; 0000-0001-5261-3923 ; 0000-0002-0403-4211 ; 0000-0002-7464-498X ; 0000-0003-4474-6528 ; 0000-0002-4442-5700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf42c/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,777,781,27905,27906,38849,38871,53821,53848</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abf42c$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Román-Garza, Jaime</creatorcontrib><creatorcontrib>Bavera, Simone S.</creatorcontrib><creatorcontrib>Fragos, Tassos</creatorcontrib><creatorcontrib>Zapartas, Emmanouil</creatorcontrib><creatorcontrib>Misra, Devina</creatorcontrib><creatorcontrib>Andrews, Jeff</creatorcontrib><creatorcontrib>Coughlin, Scotty</creatorcontrib><creatorcontrib>Dotter, Aaron</creatorcontrib><creatorcontrib>Kovlakas, Konstantinos</creatorcontrib><creatorcontrib>Serra, Juan Gabriel</creatorcontrib><creatorcontrib>Qin, Ying</creatorcontrib><creatorcontrib>Rocha, Kyle A.</creatorcontrib><creatorcontrib>Tran, Nam Hai</creatorcontrib><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr
−1
), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr
−1
, with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</description><subject>Binary stars</subject><subject>Black holes</subject><subject>Density</subject><subject>Equations of state</subject><subject>Gravitational waves</subject><subject>Massive stars</subject><subject>Neutron stars</subject><subject>Neutrons</subject><subject>Simulation</subject><subject>Star mergers</subject><subject>Supernova</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd3jwHBk3X51SY96lAnbE7cPIc0TV1n1tSkFfbf21LRix4e7_H4fL_v8QXgHKNrKhifEMRwJAimE5UVjOgDMPpZHf7MKD4GJyFsESIowWIEwnpj4IuzBroCTp03kXbWqjoY-LzZh1IHWFaw6aBlFoz_VFlpy2bf07dW6Xc467VPpm28q-CqUR4ujH8zPkAV4KK1TbkzIZiqW8GVa7024RQcFcoGc_bdx-D1_m49nUXz5cPj9GYeaSpwE6kiYYYRpTFPCsqVEohyroquBOKMUMaxQLHJWKooinMlcqpTHuM0j1EmCB2Di8G39u6jNaGR2-6BqjspSUxYSpOExx2FBkp7F4I3hax9uVN-LzGSfbSyz072Ocoh2k5yOUhKV_96qnprZYqJJHJOqKzzogOv_gD_9f0CbOOHhA</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Román-Garza, Jaime</creator><creator>Bavera, Simone S.</creator><creator>Fragos, Tassos</creator><creator>Zapartas, Emmanouil</creator><creator>Misra, Devina</creator><creator>Andrews, Jeff</creator><creator>Coughlin, Scotty</creator><creator>Dotter, Aaron</creator><creator>Kovlakas, Konstantinos</creator><creator>Serra, Juan Gabriel</creator><creator>Qin, Ying</creator><creator>Rocha, Kyle A.</creator><creator>Tran, Nam Hai</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3684-964X</orcidid><orcidid>https://orcid.org/0000-0002-5962-4796</orcidid><orcidid>https://orcid.org/0000-0002-2956-8367</orcidid><orcidid>https://orcid.org/0000-0003-1474-1523</orcidid><orcidid>https://orcid.org/0000-0002-3439-0321</orcidid><orcidid>https://orcid.org/0000-0003-4260-960X</orcidid><orcidid>https://orcid.org/0000-0001-5261-3923</orcidid><orcidid>https://orcid.org/0000-0002-0403-4211</orcidid><orcidid>https://orcid.org/0000-0002-7464-498X</orcidid><orcidid>https://orcid.org/0000-0003-4474-6528</orcidid><orcidid>https://orcid.org/0000-0002-4442-5700</orcidid></search><sort><creationdate>20210501</creationdate><title>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</title><author>Román-Garza, Jaime ; Bavera, Simone S. ; Fragos, Tassos ; Zapartas, Emmanouil ; Misra, Devina ; Andrews, Jeff ; Coughlin, Scotty ; Dotter, Aaron ; Kovlakas, Konstantinos ; Serra, Juan Gabriel ; Qin, Ying ; Rocha, Kyle A. ; Tran, Nam Hai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-af64e42ac176f37aa80377af77a807423471805eb49a305da8d3c97519d50b823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Binary stars</topic><topic>Black holes</topic><topic>Density</topic><topic>Equations of state</topic><topic>Gravitational waves</topic><topic>Massive stars</topic><topic>Neutron stars</topic><topic>Neutrons</topic><topic>Simulation</topic><topic>Star mergers</topic><topic>Supernova</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Román-Garza, Jaime</creatorcontrib><creatorcontrib>Bavera, Simone S.</creatorcontrib><creatorcontrib>Fragos, Tassos</creatorcontrib><creatorcontrib>Zapartas, Emmanouil</creatorcontrib><creatorcontrib>Misra, Devina</creatorcontrib><creatorcontrib>Andrews, Jeff</creatorcontrib><creatorcontrib>Coughlin, Scotty</creatorcontrib><creatorcontrib>Dotter, Aaron</creatorcontrib><creatorcontrib>Kovlakas, Konstantinos</creatorcontrib><creatorcontrib>Serra, Juan Gabriel</creatorcontrib><creatorcontrib>Qin, Ying</creatorcontrib><creatorcontrib>Rocha, Kyle A.</creatorcontrib><creatorcontrib>Tran, Nam Hai</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Román-Garza, Jaime</au><au>Bavera, Simone S.</au><au>Fragos, Tassos</au><au>Zapartas, Emmanouil</au><au>Misra, Devina</au><au>Andrews, Jeff</au><au>Coughlin, Scotty</au><au>Dotter, Aaron</au><au>Kovlakas, Konstantinos</au><au>Serra, Juan Gabriel</au><au>Qin, Ying</au><au>Rocha, Kyle A.</au><au>Tran, Nam Hai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-05-01</date><risdate>2021</risdate><volume>912</volume><issue>2</issue><spage>L23</spage><pages>L23-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>Recent 1D core-collapse simulations indicate a nonmonotonicity of the explodability of massive stars with respect to their precollapse core masses, which is in contrast to commonly used prescriptions. In this work, we explore the implications of these results on the formation of coalescing black hole (BH)–neutron star (NS) binaries. Furthermore, we investigate the effects of natal kicks and the NS’s radius on the synthesis of such systems and potential electromagnetic counterparts (EMCs) linked to them. Models based on 1D core-collapse simulations result in a BH–NS merger detection rate ( ∼ 2.3 yr
−1
), 5–10 times larger than the predictions of “standard” prescriptions. This is primarily due to the formation of low-mass BHs via direct collapse, and hence no natal kicks, favored by the 1D simulations. The fraction of observed systems that will produce an EMC, with the supernova engine from 1D simulations, ranges from 2% to 25%, depending on the NS equation of state. Notably, in most merging systems with EMCs, the NS is the first-born compact object, as long as the NS’s radius is ≲ 12 km. Furthermore, models with negligible kicks for low-mass BHs increase the detection rate of GW190426_152155-like events to ∼ 0.6 yr
−1
, with an associated probability of EMC ≤10% for all supernova engines. Finally, models based on 1D core-collapse simulations predict a ratio of BH–NSs to binary BHs’ merger rate density that is at least twice as high as other prescriptions, but at the same time overpredicting the measured local merger density rate of binary black holes.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/abf42c</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3684-964X</orcidid><orcidid>https://orcid.org/0000-0002-5962-4796</orcidid><orcidid>https://orcid.org/0000-0002-2956-8367</orcidid><orcidid>https://orcid.org/0000-0003-1474-1523</orcidid><orcidid>https://orcid.org/0000-0002-3439-0321</orcidid><orcidid>https://orcid.org/0000-0003-4260-960X</orcidid><orcidid>https://orcid.org/0000-0001-5261-3923</orcidid><orcidid>https://orcid.org/0000-0002-0403-4211</orcidid><orcidid>https://orcid.org/0000-0002-7464-498X</orcidid><orcidid>https://orcid.org/0000-0003-4474-6528</orcidid><orcidid>https://orcid.org/0000-0002-4442-5700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2041-8205 |
ispartof | Astrophysical journal. Letters, 2021-05, Vol.912 (2), p.L23 |
issn | 2041-8205 2041-8213 |
language | eng |
recordid | cdi_crossref_primary_10_3847_2041_8213_abf42c |
source | IOP Publishing Free Content |
subjects | Binary stars Black holes Density Equations of state Gravitational waves Massive stars Neutron stars Neutrons Simulation Star mergers Supernova |
title | The Role of Core-collapse Physics in the Observability of Black Hole Neutron Star Mergers as Multimessenger Sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T08%3A00%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Role%20of%20Core-collapse%20Physics%20in%20the%20Observability%20of%20Black%20Hole%20Neutron%20Star%20Mergers%20as%20Multimessenger%20Sources&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Rom%C3%A1n-Garza,%20Jaime&rft.date=2021-05-01&rft.volume=912&rft.issue=2&rft.spage=L23&rft.pages=L23-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abf42c&rft_dat=%3Cproquest_O3W%3E2524936675%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2524936675&rft_id=info:pmid/&rfr_iscdi=true |