Slow Cooling and Fast Reinflation for Hot Jupiters

The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of inflation. In particular, although any valid model mus...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Astrophysical journal. Letters 2021-03, Vol.909 (1), p.L16
Hauptverfasser: Thorngren, Daniel P., Fortney, Jonathan J., Lopez, Eric D., Berger, Travis A., Huber, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page L16
container_title Astrophysical journal. Letters
container_volume 909
creator Thorngren, Daniel P.
Fortney, Jonathan J.
Lopez, Eric D.
Berger, Travis A.
Huber, Daniel
description The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of inflation. In particular, although any valid model must allow for maintaining large planetary radii, only some allow for radii to increase with time. This reinflation process would potentially occur when the incident flux on the planet is increased. In this work, we examine the observed population of hot Jupiters to see if they grow as their parent stars brighten along the main sequence. We consider the relation between radius and other observables, including mass, incident flux, age, and fractional age (age over main-sequence lifetime), and show that main-sequence brightening is often sufficient to produce detectable reinflation. We further argue that these provide strong evidence for the relatively rapid reinflation of giant planets, and discuss the implications for proposed heating mechanisms. In our population analysis we also find evidence for a “delayed cooling effect,” wherein planets cool and contract far more slowly than expected. While not capable of explaining the observed radii alone, it may represent an important component of the effect. Finally, we identify a weak negative relationship between stellar metallicity and planet radius that is presumably the result of enhanced planetary bulk metallicity around metal-rich stars and has important implications for planet formation theory.
doi_str_mv 10.3847/2041-8213/abe86d
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_crossref_primary_10_3847_2041_8213_abe86d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2499087377</sourcerecordid><originalsourceid>FETCH-LOGICAL-c381t-e62388c9ae48e7e49e06ea9ba4e48b809d92b99360816b24c51b27eef905f6a13</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7ePQYET9adfGyaHGVxXWVB8OMc0nYiXWpTky7if2-XynoRTzM8fu8N8wg5Z3AttMxnHCTLNGdi5grUqjogk710uN9hfkxOUtoAcFBMTwh_bsInXYTQ1O0bdW1Fly719Anr1jeur0NLfYh0FXr6sO3qHmM6JUfeNQnPfuaUvC5vXxarbP14d7-4WWel0KzPUHGhdWkcSo05SoOg0JnCyUEoNJjK8MIYoUAzVXBZzlnBc0RvYO6VY2JKLsbcLoaPLabebsI2tsNJy6UxoHOR5wMFI1XGkFJEb7tYv7v4ZRnYXTN297rd1WDHZgbL1WipQ_eb-Q9--Qfuuk1jDRjL7Jop21VefAO2q3Be</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2499087377</pqid></control><display><type>article</type><title>Slow Cooling and Fast Reinflation for Hot Jupiters</title><source>IOP Publishing Free Content</source><creator>Thorngren, Daniel P. ; Fortney, Jonathan J. ; Lopez, Eric D. ; Berger, Travis A. ; Huber, Daniel</creator><creatorcontrib>Thorngren, Daniel P. ; Fortney, Jonathan J. ; Lopez, Eric D. ; Berger, Travis A. ; Huber, Daniel</creatorcontrib><description>The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of inflation. In particular, although any valid model must allow for maintaining large planetary radii, only some allow for radii to increase with time. This reinflation process would potentially occur when the incident flux on the planet is increased. In this work, we examine the observed population of hot Jupiters to see if they grow as their parent stars brighten along the main sequence. We consider the relation between radius and other observables, including mass, incident flux, age, and fractional age (age over main-sequence lifetime), and show that main-sequence brightening is often sufficient to produce detectable reinflation. We further argue that these provide strong evidence for the relatively rapid reinflation of giant planets, and discuss the implications for proposed heating mechanisms. In our population analysis we also find evidence for a “delayed cooling effect,” wherein planets cool and contract far more slowly than expected. While not capable of explaining the observed radii alone, it may represent an important component of the effect. Finally, we identify a weak negative relationship between stellar metallicity and planet radius that is presumably the result of enhanced planetary bulk metallicity around metal-rich stars and has important implications for planet formation theory.</description><identifier>ISSN: 2041-8205</identifier><identifier>EISSN: 2041-8213</identifier><identifier>DOI: 10.3847/2041-8213/abe86d</identifier><language>eng</language><publisher>Austin: The American Astronomical Society</publisher><subject>Age ; Astrostatistics ; Brightening ; Cooling ; Cooling effects ; Exoplanet evolution ; Exoplanets ; Extrasolar gaseous giant planets ; Extrasolar planets ; Gas giant planets ; Hot Jupiters ; Jupiter ; Metallicity ; Planet formation ; Planets ; Stellar evolution</subject><ispartof>Astrophysical journal. Letters, 2021-03, Vol.909 (1), p.L16</ispartof><rights>2021. The American Astronomical Society. All rights reserved.</rights><rights>Copyright IOP Publishing Mar 01, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c381t-e62388c9ae48e7e49e06ea9ba4e48b809d92b99360816b24c51b27eef905f6a13</citedby><cites>FETCH-LOGICAL-c381t-e62388c9ae48e7e49e06ea9ba4e48b809d92b99360816b24c51b27eef905f6a13</cites><orcidid>0000-0001-8832-4488 ; 0000-0002-7727-4603 ; 0000-0002-2580-3614 ; 0000-0002-5113-8558 ; 0000-0002-9843-4354</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abe86d/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,38868,38890,53840,53867</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/2041-8213/abe86d$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc></links><search><creatorcontrib>Thorngren, Daniel P.</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Lopez, Eric D.</creatorcontrib><creatorcontrib>Berger, Travis A.</creatorcontrib><creatorcontrib>Huber, Daniel</creatorcontrib><title>Slow Cooling and Fast Reinflation for Hot Jupiters</title><title>Astrophysical journal. Letters</title><addtitle>APJL</addtitle><addtitle>Astrophys. J. Lett</addtitle><description>The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of inflation. In particular, although any valid model must allow for maintaining large planetary radii, only some allow for radii to increase with time. This reinflation process would potentially occur when the incident flux on the planet is increased. In this work, we examine the observed population of hot Jupiters to see if they grow as their parent stars brighten along the main sequence. We consider the relation between radius and other observables, including mass, incident flux, age, and fractional age (age over main-sequence lifetime), and show that main-sequence brightening is often sufficient to produce detectable reinflation. We further argue that these provide strong evidence for the relatively rapid reinflation of giant planets, and discuss the implications for proposed heating mechanisms. In our population analysis we also find evidence for a “delayed cooling effect,” wherein planets cool and contract far more slowly than expected. While not capable of explaining the observed radii alone, it may represent an important component of the effect. Finally, we identify a weak negative relationship between stellar metallicity and planet radius that is presumably the result of enhanced planetary bulk metallicity around metal-rich stars and has important implications for planet formation theory.</description><subject>Age</subject><subject>Astrostatistics</subject><subject>Brightening</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Exoplanet evolution</subject><subject>Exoplanets</subject><subject>Extrasolar gaseous giant planets</subject><subject>Extrasolar planets</subject><subject>Gas giant planets</subject><subject>Hot Jupiters</subject><subject>Jupiter</subject><subject>Metallicity</subject><subject>Planet formation</subject><subject>Planets</subject><subject>Stellar evolution</subject><issn>2041-8205</issn><issn>2041-8213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7ePQYET9adfGyaHGVxXWVB8OMc0nYiXWpTky7if2-XynoRTzM8fu8N8wg5Z3AttMxnHCTLNGdi5grUqjogk710uN9hfkxOUtoAcFBMTwh_bsInXYTQ1O0bdW1Fly719Anr1jeur0NLfYh0FXr6sO3qHmM6JUfeNQnPfuaUvC5vXxarbP14d7-4WWel0KzPUHGhdWkcSo05SoOg0JnCyUEoNJjK8MIYoUAzVXBZzlnBc0RvYO6VY2JKLsbcLoaPLabebsI2tsNJy6UxoHOR5wMFI1XGkFJEb7tYv7v4ZRnYXTN297rd1WDHZgbL1WipQ_eb-Q9--Qfuuk1jDRjL7Jop21VefAO2q3Be</recordid><startdate>20210301</startdate><enddate>20210301</enddate><creator>Thorngren, Daniel P.</creator><creator>Fortney, Jonathan J.</creator><creator>Lopez, Eric D.</creator><creator>Berger, Travis A.</creator><creator>Huber, Daniel</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-8832-4488</orcidid><orcidid>https://orcid.org/0000-0002-7727-4603</orcidid><orcidid>https://orcid.org/0000-0002-2580-3614</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid></search><sort><creationdate>20210301</creationdate><title>Slow Cooling and Fast Reinflation for Hot Jupiters</title><author>Thorngren, Daniel P. ; Fortney, Jonathan J. ; Lopez, Eric D. ; Berger, Travis A. ; Huber, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c381t-e62388c9ae48e7e49e06ea9ba4e48b809d92b99360816b24c51b27eef905f6a13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Age</topic><topic>Astrostatistics</topic><topic>Brightening</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Exoplanet evolution</topic><topic>Exoplanets</topic><topic>Extrasolar gaseous giant planets</topic><topic>Extrasolar planets</topic><topic>Gas giant planets</topic><topic>Hot Jupiters</topic><topic>Jupiter</topic><topic>Metallicity</topic><topic>Planet formation</topic><topic>Planets</topic><topic>Stellar evolution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thorngren, Daniel P.</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Lopez, Eric D.</creatorcontrib><creatorcontrib>Berger, Travis A.</creatorcontrib><creatorcontrib>Huber, Daniel</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Astrophysical journal. Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Thorngren, Daniel P.</au><au>Fortney, Jonathan J.</au><au>Lopez, Eric D.</au><au>Berger, Travis A.</au><au>Huber, Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow Cooling and Fast Reinflation for Hot Jupiters</atitle><jtitle>Astrophysical journal. Letters</jtitle><stitle>APJL</stitle><addtitle>Astrophys. J. Lett</addtitle><date>2021-03-01</date><risdate>2021</risdate><volume>909</volume><issue>1</issue><spage>L16</spage><pages>L16-</pages><issn>2041-8205</issn><eissn>2041-8213</eissn><abstract>The unexpectedly large radii of hot Jupiters are a longstanding mystery whose solution will provide important insights into their interior physics. Many potential solutions have been suggested, which make diverse predictions about the details of inflation. In particular, although any valid model must allow for maintaining large planetary radii, only some allow for radii to increase with time. This reinflation process would potentially occur when the incident flux on the planet is increased. In this work, we examine the observed population of hot Jupiters to see if they grow as their parent stars brighten along the main sequence. We consider the relation between radius and other observables, including mass, incident flux, age, and fractional age (age over main-sequence lifetime), and show that main-sequence brightening is often sufficient to produce detectable reinflation. We further argue that these provide strong evidence for the relatively rapid reinflation of giant planets, and discuss the implications for proposed heating mechanisms. In our population analysis we also find evidence for a “delayed cooling effect,” wherein planets cool and contract far more slowly than expected. While not capable of explaining the observed radii alone, it may represent an important component of the effect. Finally, we identify a weak negative relationship between stellar metallicity and planet radius that is presumably the result of enhanced planetary bulk metallicity around metal-rich stars and has important implications for planet formation theory.</abstract><cop>Austin</cop><pub>The American Astronomical Society</pub><doi>10.3847/2041-8213/abe86d</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8832-4488</orcidid><orcidid>https://orcid.org/0000-0002-7727-4603</orcidid><orcidid>https://orcid.org/0000-0002-2580-3614</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2041-8205
ispartof Astrophysical journal. Letters, 2021-03, Vol.909 (1), p.L16
issn 2041-8205
2041-8213
language eng
recordid cdi_crossref_primary_10_3847_2041_8213_abe86d
source IOP Publishing Free Content
subjects Age
Astrostatistics
Brightening
Cooling
Cooling effects
Exoplanet evolution
Exoplanets
Extrasolar gaseous giant planets
Extrasolar planets
Gas giant planets
Hot Jupiters
Jupiter
Metallicity
Planet formation
Planets
Stellar evolution
title Slow Cooling and Fast Reinflation for Hot Jupiters
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A07%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20Cooling%20and%20Fast%20Reinflation%20for%20Hot%20Jupiters&rft.jtitle=Astrophysical%20journal.%20Letters&rft.au=Thorngren,%20Daniel%20P.&rft.date=2021-03-01&rft.volume=909&rft.issue=1&rft.spage=L16&rft.pages=L16-&rft.issn=2041-8205&rft.eissn=2041-8213&rft_id=info:doi/10.3847/2041-8213/abe86d&rft_dat=%3Cproquest_O3W%3E2499087377%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2499087377&rft_id=info:pmid/&rfr_iscdi=true