Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout
Shock breakout is the first electromagnetic signal from supernovae (SNe), which contains important information on the explosion energy and the size and chemical composition of the progenitor star. This paper presents the first two-dimensional (2D) multiwavelength radiation hydrodynamics simulations...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-11, Vol.976 (1), p.147 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | 147 |
container_title | The Astrophysical journal |
container_volume | 976 |
creator | Chen, Wun-Yi Chen, Ke-Jung Ono, Masaomi |
description | Shock breakout is the first electromagnetic signal from supernovae (SNe), which contains important information on the explosion energy and the size and chemical composition of the progenitor star. This paper presents the first two-dimensional (2D) multiwavelength radiation hydrodynamics simulations of SN 1987A shock breakout by using the CASTRO code with the OPAL opacity table considering eight photon groups from infrared to X-ray. To investigate the impact of the pre-SN environment of SN 1987A, we consider three possible circumstellar medium environments: a steady wind, an eruptive mass loss, and the existence of a companion star. In sum, the resulting breakout light curve has an hour-long duration and a peak luminosity of ∼4 × 10 46 erg s −1 , with a decay rate of ∼3.5 mag hr −1 in X-ray. The dominant band transits to UV around 3 hr after the initial breakout, and its luminosity has a decay rate of ∼1.5 mag hr −1 that agrees well with the observed shock breakout tail. The detailed features of breakout emission are sensitive to the pre-explosion environment. Furthermore, our 2D simulations demonstrate the importance of multidimensional mixing and its impacts on shock dynamics and radiation emission. The mixing emerging from the shock breakout may lead to a global asymmetry of SN ejecta and affect its later SN remnant formation. |
doi_str_mv | 10.3847/1538-4357/ad7de3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad7de3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_5c2eee1975c34fc6bfe04bab2b7c22e1</doaj_id><sourcerecordid>3130799974</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-7959d909086e0aab950d681925ada4b1ebd4afe9ca4a91f08c8888390059d4463</originalsourceid><addsrcrecordid>eNp9UU1LxDAQDaLg-nH3WBBvVpMmbTpHFXUFP8BV8BamSapZu5uatIf993at6EWcy3y99wbeEHLA6AkvhTxlOS9TwXN5ikYayzfI5Ge0SSaUUpEWXL5sk50Y5-s2A5iQh7u-6ZxxC7uMzi-xSR7ROOyGOpmuTPBmtcSF0zGZuUXffC1i4utkdp8wKOVZMnvz-j05Dxbffd_tka0am2j3v_Mueb66fLqYprcP1zcXZ7epzkrZpRJyMECBloWliBXk1BQlgyxHg6JitjICawsaBQKraanLIThQOvCEKPguuRl1jce5aoNbYFgpj059DXx4VRg6pxurcp1ZaxnIXHNR66KqLRUVVlkldZZZNmgdjlpt8B-9jZ2a-z4MXkTFGacSAKQYUHRE6eBjDLb-ucqoWr9Arf1Wa7_V-IKBcjxSnG9_Nf-BH_0Bx3auQBaKKTaQWlPzT4WHlDs</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3130799974</pqid></control><display><type>article</type><title>Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Chen, Wun-Yi ; Chen, Ke-Jung ; Ono, Masaomi</creator><creatorcontrib>Chen, Wun-Yi ; Chen, Ke-Jung ; Ono, Masaomi</creatorcontrib><description>Shock breakout is the first electromagnetic signal from supernovae (SNe), which contains important information on the explosion energy and the size and chemical composition of the progenitor star. This paper presents the first two-dimensional (2D) multiwavelength radiation hydrodynamics simulations of SN 1987A shock breakout by using the CASTRO code with the OPAL opacity table considering eight photon groups from infrared to X-ray. To investigate the impact of the pre-SN environment of SN 1987A, we consider three possible circumstellar medium environments: a steady wind, an eruptive mass loss, and the existence of a companion star. In sum, the resulting breakout light curve has an hour-long duration and a peak luminosity of ∼4 × 10 46 erg s −1 , with a decay rate of ∼3.5 mag hr −1 in X-ray. The dominant band transits to UV around 3 hr after the initial breakout, and its luminosity has a decay rate of ∼1.5 mag hr −1 that agrees well with the observed shock breakout tail. The detailed features of breakout emission are sensitive to the pre-explosion environment. Furthermore, our 2D simulations demonstrate the importance of multidimensional mixing and its impacts on shock dynamics and radiation emission. The mixing emerging from the shock breakout may lead to a global asymmetry of SN ejecta and affect its later SN remnant formation.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad7de3</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Chemical composition ; Companion stars ; Decay ; Decay rate ; Ejecta ; Emission ; Emissions ; Fluid mechanics ; Hydrodynamical simulations ; Hydrodynamics ; Infrared radiation ; Light curve ; Luminosity ; Opacity ; Radiation ; Radiative transfer simulations ; Shocks ; Simulation ; Supernova 1987A ; Supernovae ; Ultraviolet astronomy</subject><ispartof>The Astrophysical journal, 2024-11, Vol.976 (1), p.147</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-7959d909086e0aab950d681925ada4b1ebd4afe9ca4a91f08c8888390059d4463</cites><orcidid>0000-0002-0603-918X ; 0009-0002-3816-4732 ; 0000-0002-4848-5508</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad7de3/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2102,27924,27925,38890,53867</link.rule.ids></links><search><creatorcontrib>Chen, Wun-Yi</creatorcontrib><creatorcontrib>Chen, Ke-Jung</creatorcontrib><creatorcontrib>Ono, Masaomi</creatorcontrib><title>Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Shock breakout is the first electromagnetic signal from supernovae (SNe), which contains important information on the explosion energy and the size and chemical composition of the progenitor star. This paper presents the first two-dimensional (2D) multiwavelength radiation hydrodynamics simulations of SN 1987A shock breakout by using the CASTRO code with the OPAL opacity table considering eight photon groups from infrared to X-ray. To investigate the impact of the pre-SN environment of SN 1987A, we consider three possible circumstellar medium environments: a steady wind, an eruptive mass loss, and the existence of a companion star. In sum, the resulting breakout light curve has an hour-long duration and a peak luminosity of ∼4 × 10 46 erg s −1 , with a decay rate of ∼3.5 mag hr −1 in X-ray. The dominant band transits to UV around 3 hr after the initial breakout, and its luminosity has a decay rate of ∼1.5 mag hr −1 that agrees well with the observed shock breakout tail. The detailed features of breakout emission are sensitive to the pre-explosion environment. Furthermore, our 2D simulations demonstrate the importance of multidimensional mixing and its impacts on shock dynamics and radiation emission. The mixing emerging from the shock breakout may lead to a global asymmetry of SN ejecta and affect its later SN remnant formation.</description><subject>Chemical composition</subject><subject>Companion stars</subject><subject>Decay</subject><subject>Decay rate</subject><subject>Ejecta</subject><subject>Emission</subject><subject>Emissions</subject><subject>Fluid mechanics</subject><subject>Hydrodynamical simulations</subject><subject>Hydrodynamics</subject><subject>Infrared radiation</subject><subject>Light curve</subject><subject>Luminosity</subject><subject>Opacity</subject><subject>Radiation</subject><subject>Radiative transfer simulations</subject><subject>Shocks</subject><subject>Simulation</subject><subject>Supernova 1987A</subject><subject>Supernovae</subject><subject>Ultraviolet astronomy</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp9UU1LxDAQDaLg-nH3WBBvVpMmbTpHFXUFP8BV8BamSapZu5uatIf993at6EWcy3y99wbeEHLA6AkvhTxlOS9TwXN5ikYayzfI5Ge0SSaUUpEWXL5sk50Y5-s2A5iQh7u-6ZxxC7uMzi-xSR7ROOyGOpmuTPBmtcSF0zGZuUXffC1i4utkdp8wKOVZMnvz-j05Dxbffd_tka0am2j3v_Mueb66fLqYprcP1zcXZ7epzkrZpRJyMECBloWliBXk1BQlgyxHg6JitjICawsaBQKraanLIThQOvCEKPguuRl1jce5aoNbYFgpj059DXx4VRg6pxurcp1ZaxnIXHNR66KqLRUVVlkldZZZNmgdjlpt8B-9jZ2a-z4MXkTFGacSAKQYUHRE6eBjDLb-ucqoWr9Arf1Wa7_V-IKBcjxSnG9_Nf-BH_0Bx3auQBaKKTaQWlPzT4WHlDs</recordid><startdate>20241101</startdate><enddate>20241101</enddate><creator>Chen, Wun-Yi</creator><creator>Chen, Ke-Jung</creator><creator>Ono, Masaomi</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0603-918X</orcidid><orcidid>https://orcid.org/0009-0002-3816-4732</orcidid><orcidid>https://orcid.org/0000-0002-4848-5508</orcidid></search><sort><creationdate>20241101</creationdate><title>Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout</title><author>Chen, Wun-Yi ; Chen, Ke-Jung ; Ono, Masaomi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-7959d909086e0aab950d681925ada4b1ebd4afe9ca4a91f08c8888390059d4463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Chemical composition</topic><topic>Companion stars</topic><topic>Decay</topic><topic>Decay rate</topic><topic>Ejecta</topic><topic>Emission</topic><topic>Emissions</topic><topic>Fluid mechanics</topic><topic>Hydrodynamical simulations</topic><topic>Hydrodynamics</topic><topic>Infrared radiation</topic><topic>Light curve</topic><topic>Luminosity</topic><topic>Opacity</topic><topic>Radiation</topic><topic>Radiative transfer simulations</topic><topic>Shocks</topic><topic>Simulation</topic><topic>Supernova 1987A</topic><topic>Supernovae</topic><topic>Ultraviolet astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Wun-Yi</creatorcontrib><creatorcontrib>Chen, Ke-Jung</creatorcontrib><creatorcontrib>Ono, Masaomi</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Wun-Yi</au><au>Chen, Ke-Jung</au><au>Ono, Masaomi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-11-01</date><risdate>2024</risdate><volume>976</volume><issue>1</issue><spage>147</spage><pages>147-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Shock breakout is the first electromagnetic signal from supernovae (SNe), which contains important information on the explosion energy and the size and chemical composition of the progenitor star. This paper presents the first two-dimensional (2D) multiwavelength radiation hydrodynamics simulations of SN 1987A shock breakout by using the CASTRO code with the OPAL opacity table considering eight photon groups from infrared to X-ray. To investigate the impact of the pre-SN environment of SN 1987A, we consider three possible circumstellar medium environments: a steady wind, an eruptive mass loss, and the existence of a companion star. In sum, the resulting breakout light curve has an hour-long duration and a peak luminosity of ∼4 × 10 46 erg s −1 , with a decay rate of ∼3.5 mag hr −1 in X-ray. The dominant band transits to UV around 3 hr after the initial breakout, and its luminosity has a decay rate of ∼1.5 mag hr −1 that agrees well with the observed shock breakout tail. The detailed features of breakout emission are sensitive to the pre-explosion environment. Furthermore, our 2D simulations demonstrate the importance of multidimensional mixing and its impacts on shock dynamics and radiation emission. The mixing emerging from the shock breakout may lead to a global asymmetry of SN ejecta and affect its later SN remnant formation.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad7de3</doi><tpages>22</tpages><orcidid>https://orcid.org/0000-0002-0603-918X</orcidid><orcidid>https://orcid.org/0009-0002-3816-4732</orcidid><orcidid>https://orcid.org/0000-0002-4848-5508</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-11, Vol.976 (1), p.147 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ad7de3 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Chemical composition Companion stars Decay Decay rate Ejecta Emission Emissions Fluid mechanics Hydrodynamical simulations Hydrodynamics Infrared radiation Light curve Luminosity Opacity Radiation Radiative transfer simulations Shocks Simulation Supernova 1987A Supernovae Ultraviolet astronomy |
title | Multidimensional Radiation Hydrodynamics Simulations of SN 1987A Shock Breakout |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A32%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multidimensional%20Radiation%20Hydrodynamics%20Simulations%20of%20SN%201987A%20Shock%20Breakout&rft.jtitle=The%20Astrophysical%20journal&rft.au=Chen,%20Wun-Yi&rft.date=2024-11-01&rft.volume=976&rft.issue=1&rft.spage=147&rft.pages=147-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad7de3&rft_dat=%3Cproquest_cross%3E3130799974%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3130799974&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_5c2eee1975c34fc6bfe04bab2b7c22e1&rfr_iscdi=true |