Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study

We analyze the interaction between an interplanetary coronal mass ejection (ICME) detected in situ at the L1 Lagrange point on 2016 October 12 with a trailing high-speed stream (HSS). We aim to estimate the region in the interplanetary (IP) space where the interaction happened/started using a combin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-10, Vol.974 (1), p.140
Hauptverfasser: Remeshan, Akshay Kumar, Dumbović, Mateja, Temmer, Manuela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 140
container_title The Astrophysical journal
container_volume 974
creator Remeshan, Akshay Kumar
Dumbović, Mateja
Temmer, Manuela
description We analyze the interaction between an interplanetary coronal mass ejection (ICME) detected in situ at the L1 Lagrange point on 2016 October 12 with a trailing high-speed stream (HSS). We aim to estimate the region in the interplanetary (IP) space where the interaction happened/started using a combined observational-modeling approach. We use minimum variance analysis (MVA) and the Walen test to analyze possible reconnection exhaust at the interface of ICME and HSS. We perform a graduated cylindrical shell reconstruction of the CME to estimate the geometry and source location of the CME. Finally, we use a two-step drag-based model (DBM) model to estimate the region in IP space where the interaction took place. The magnetic obstacle observed in situ shows a fairly symmetric and undisturbed structure and shows the magnetic flux, helicity, and expansion profile/speed of a typical ICME. The MVA together with the Walen test, however, confirms reconnection exhaust at the ICME–HSS boundary. Thus, in situ signatures are in favor of a scenario where the interaction is fairly recent. The trailing HSS shows a distinct velocity profile which first reaches a semi-saturated plateau with an average velocity of 500 km s −1 and then saturates at a maximum speed of 710 km s −1 . We find that the HSS's interaction with the ICME is influenced only by this initial plateau. The results of the two-step DBM suggest that the ICME has started interacting with the HSS close to Earth (∼0.81 au), which compares well with the deductions from in situ signatures.
doi_str_mv 10.3847/1538-4357/ad6c43
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad6c43</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_ab2d37e9d32040f6bd31b288f0367c1b</doaj_id><sourcerecordid>3115067957</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-c3863fa8d1dd915cf947f3a0706afbfebc5d527d3b549cb0970c29b8eb2c56813</originalsourceid><addsrcrecordid>eNp1UcFOGzEUtFCRSKF3jpa4so29Xq93uaFASySqItFKvVnP9nNwFNbBdlrx992wKD319DSjmXnvaQg55-yz6Bo151J0VSOkmoNrbSOOyOxAfSAzxlhTtUL9OiEfc17vYd33M2JuMIXfYVjR8oR0ORRMYEuIA32IYSjUYPmDOFCgi5jiABv6DXKmt2ucVDA4ehdWT1XeIjr6WBLC8xW9pgvIOMKdez0jxx42GT-9z1Py88vtj8Vddf_963JxfV_Z8ZJSWdG1wkPnuHM9l9b3jfICmGIteOPRWOlkrZwwsumtYb1io9F0aGor246LU7Kccl2Etd6m8AzpVUcI-o2IaaUhlWA3qMHUTijsnahZw3xrnOCm7jrPRKssN2PWxZS1TfFlh7noddyl8f2sBeeStaqXalSxSWVTzDmhP2zlTO9b0fsK9L4CPbUyWi4nS4jbf5n_lf8FMgiNFw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3115067957</pqid></control><display><type>article</type><title>Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Remeshan, Akshay Kumar ; Dumbović, Mateja ; Temmer, Manuela</creator><creatorcontrib>Remeshan, Akshay Kumar ; Dumbović, Mateja ; Temmer, Manuela</creatorcontrib><description>We analyze the interaction between an interplanetary coronal mass ejection (ICME) detected in situ at the L1 Lagrange point on 2016 October 12 with a trailing high-speed stream (HSS). We aim to estimate the region in the interplanetary (IP) space where the interaction happened/started using a combined observational-modeling approach. We use minimum variance analysis (MVA) and the Walen test to analyze possible reconnection exhaust at the interface of ICME and HSS. We perform a graduated cylindrical shell reconstruction of the CME to estimate the geometry and source location of the CME. Finally, we use a two-step drag-based model (DBM) model to estimate the region in IP space where the interaction took place. The magnetic obstacle observed in situ shows a fairly symmetric and undisturbed structure and shows the magnetic flux, helicity, and expansion profile/speed of a typical ICME. The MVA together with the Walen test, however, confirms reconnection exhaust at the ICME–HSS boundary. Thus, in situ signatures are in favor of a scenario where the interaction is fairly recent. The trailing HSS shows a distinct velocity profile which first reaches a semi-saturated plateau with an average velocity of 500 km s −1 and then saturates at a maximum speed of 710 km s −1 . We find that the HSS's interaction with the ICME is influenced only by this initial plateau. The results of the two-step DBM suggest that the ICME has started interacting with the HSS close to Earth (∼0.81 au), which compares well with the deductions from in situ signatures.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad6c43</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Average velocity ; Coronal mass ejection ; Cylindrical shells ; Helicity ; High speed ; Lagrangian equilibrium points ; Magnetic flux ; Signatures ; Solar coronal mass ejections ; Solar magnetic reconnection ; Variance analysis ; Velocity ; Velocity distribution</subject><ispartof>The Astrophysical journal, 2024-10, Vol.974 (1), p.140</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c299t-c3863fa8d1dd915cf947f3a0706afbfebc5d527d3b549cb0970c29b8eb2c56813</cites><orcidid>0009-0009-1477-8378 ; 0000-0003-4867-7558 ; 0000-0002-8680-8267</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad6c43/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38869,53846</link.rule.ids></links><search><creatorcontrib>Remeshan, Akshay Kumar</creatorcontrib><creatorcontrib>Dumbović, Mateja</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><title>Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We analyze the interaction between an interplanetary coronal mass ejection (ICME) detected in situ at the L1 Lagrange point on 2016 October 12 with a trailing high-speed stream (HSS). We aim to estimate the region in the interplanetary (IP) space where the interaction happened/started using a combined observational-modeling approach. We use minimum variance analysis (MVA) and the Walen test to analyze possible reconnection exhaust at the interface of ICME and HSS. We perform a graduated cylindrical shell reconstruction of the CME to estimate the geometry and source location of the CME. Finally, we use a two-step drag-based model (DBM) model to estimate the region in IP space where the interaction took place. The magnetic obstacle observed in situ shows a fairly symmetric and undisturbed structure and shows the magnetic flux, helicity, and expansion profile/speed of a typical ICME. The MVA together with the Walen test, however, confirms reconnection exhaust at the ICME–HSS boundary. Thus, in situ signatures are in favor of a scenario where the interaction is fairly recent. The trailing HSS shows a distinct velocity profile which first reaches a semi-saturated plateau with an average velocity of 500 km s −1 and then saturates at a maximum speed of 710 km s −1 . We find that the HSS's interaction with the ICME is influenced only by this initial plateau. The results of the two-step DBM suggest that the ICME has started interacting with the HSS close to Earth (∼0.81 au), which compares well with the deductions from in situ signatures.</description><subject>Average velocity</subject><subject>Coronal mass ejection</subject><subject>Cylindrical shells</subject><subject>Helicity</subject><subject>High speed</subject><subject>Lagrangian equilibrium points</subject><subject>Magnetic flux</subject><subject>Signatures</subject><subject>Solar coronal mass ejections</subject><subject>Solar magnetic reconnection</subject><subject>Variance analysis</subject><subject>Velocity</subject><subject>Velocity distribution</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UcFOGzEUtFCRSKF3jpa4so29Xq93uaFASySqItFKvVnP9nNwFNbBdlrx992wKD319DSjmXnvaQg55-yz6Bo151J0VSOkmoNrbSOOyOxAfSAzxlhTtUL9OiEfc17vYd33M2JuMIXfYVjR8oR0ORRMYEuIA32IYSjUYPmDOFCgi5jiABv6DXKmt2ucVDA4ehdWT1XeIjr6WBLC8xW9pgvIOMKdez0jxx42GT-9z1Py88vtj8Vddf_963JxfV_Z8ZJSWdG1wkPnuHM9l9b3jfICmGIteOPRWOlkrZwwsumtYb1io9F0aGor246LU7Kccl2Etd6m8AzpVUcI-o2IaaUhlWA3qMHUTijsnahZw3xrnOCm7jrPRKssN2PWxZS1TfFlh7noddyl8f2sBeeStaqXalSxSWVTzDmhP2zlTO9b0fsK9L4CPbUyWi4nS4jbf5n_lf8FMgiNFw</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Remeshan, Akshay Kumar</creator><creator>Dumbović, Mateja</creator><creator>Temmer, Manuela</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0009-1477-8378</orcidid><orcidid>https://orcid.org/0000-0003-4867-7558</orcidid><orcidid>https://orcid.org/0000-0002-8680-8267</orcidid></search><sort><creationdate>20241001</creationdate><title>Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study</title><author>Remeshan, Akshay Kumar ; Dumbović, Mateja ; Temmer, Manuela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-c3863fa8d1dd915cf947f3a0706afbfebc5d527d3b549cb0970c29b8eb2c56813</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Average velocity</topic><topic>Coronal mass ejection</topic><topic>Cylindrical shells</topic><topic>Helicity</topic><topic>High speed</topic><topic>Lagrangian equilibrium points</topic><topic>Magnetic flux</topic><topic>Signatures</topic><topic>Solar coronal mass ejections</topic><topic>Solar magnetic reconnection</topic><topic>Variance analysis</topic><topic>Velocity</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Remeshan, Akshay Kumar</creatorcontrib><creatorcontrib>Dumbović, Mateja</creatorcontrib><creatorcontrib>Temmer, Manuela</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Remeshan, Akshay Kumar</au><au>Dumbović, Mateja</au><au>Temmer, Manuela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-10-01</date><risdate>2024</risdate><volume>974</volume><issue>1</issue><spage>140</spage><pages>140-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We analyze the interaction between an interplanetary coronal mass ejection (ICME) detected in situ at the L1 Lagrange point on 2016 October 12 with a trailing high-speed stream (HSS). We aim to estimate the region in the interplanetary (IP) space where the interaction happened/started using a combined observational-modeling approach. We use minimum variance analysis (MVA) and the Walen test to analyze possible reconnection exhaust at the interface of ICME and HSS. We perform a graduated cylindrical shell reconstruction of the CME to estimate the geometry and source location of the CME. Finally, we use a two-step drag-based model (DBM) model to estimate the region in IP space where the interaction took place. The magnetic obstacle observed in situ shows a fairly symmetric and undisturbed structure and shows the magnetic flux, helicity, and expansion profile/speed of a typical ICME. The MVA together with the Walen test, however, confirms reconnection exhaust at the ICME–HSS boundary. Thus, in situ signatures are in favor of a scenario where the interaction is fairly recent. The trailing HSS shows a distinct velocity profile which first reaches a semi-saturated plateau with an average velocity of 500 km s −1 and then saturates at a maximum speed of 710 km s −1 . We find that the HSS's interaction with the ICME is influenced only by this initial plateau. The results of the two-step DBM suggest that the ICME has started interacting with the HSS close to Earth (∼0.81 au), which compares well with the deductions from in situ signatures.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad6c43</doi><tpages>10</tpages><orcidid>https://orcid.org/0009-0009-1477-8378</orcidid><orcidid>https://orcid.org/0000-0003-4867-7558</orcidid><orcidid>https://orcid.org/0000-0002-8680-8267</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-10, Vol.974 (1), p.140
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ad6c43
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Average velocity
Coronal mass ejection
Cylindrical shells
Helicity
High speed
Lagrangian equilibrium points
Magnetic flux
Signatures
Solar coronal mass ejections
Solar magnetic reconnection
Variance analysis
Velocity
Velocity distribution
title Deriving the Interaction Point between a Coronal Mass Ejection and High-speed Stream: A Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A44%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deriving%20the%20Interaction%20Point%20between%20a%20Coronal%20Mass%20Ejection%20and%20High-speed%20Stream:%20A%20Case%20Study&rft.jtitle=The%20Astrophysical%20journal&rft.au=Remeshan,%20Akshay%20Kumar&rft.date=2024-10-01&rft.volume=974&rft.issue=1&rft.spage=140&rft.pages=140-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad6c43&rft_dat=%3Cproquest_cross%3E3115067957%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3115067957&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_ab2d37e9d32040f6bd31b288f0367c1b&rfr_iscdi=true