The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan

The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2024-06, Vol.967 (2), p.82
Hauptverfasser: Ruan, Wenzhi, Keppens, Rony, Yan, Limei, Antolin, Patrick
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 82
container_title The Astrophysical journal
container_volume 967
creator Ruan, Wenzhi
Keppens, Rony
Yan, Limei
Antolin, Patrick
description The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.
doi_str_mv 10.3847/1538-4357/ad3915
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad3915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2433631896541b5a212d1d9fb94cdc3</doaj_id><sourcerecordid>3057820388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxa2qSN0uvXO0VI4E_JHENrcKsS3Sol5oy82a-GOT7RIH2zksfz1ZguiFnkbz9OY3TzMInVByzmUpLmjFZVHySlyA5YpWH9DiTfqIFoSQsqi5uP-EPqe0PbRMqQX6fdc6vA7R9fkJr0I0DkPGf0L8e4lvx13uhhaSw7ew6V0O7d7GYPc9PHQm4dzGMG7aMGYMeLWDOJE679IA_TE68rBL7strXaJfq-u7qx_F-uf3m6tv68JwJnPB67IUDfENMA8ODJNS8sp4VldlI6mwNSfQWEO8EwqY8DUoQ6pGklpIZRu-RDcz1wbY6iF2DxD3OkCnX4QQNxpi7szOaWAl5zWnUk1w2lTAKLPUKt-o0ljDJ9bXmTXE8Di6lPU2jLGf4mtOKiEZ4VO6JSKzy8SQUnT-bSsl-vAJfTi7Ppxdz5-YRk7nkS4M_5gwbLWqhWZaMj1YP9nO3rH9l_oMsCmVqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057820388</pqid></control><display><type>article</type><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</creator><creatorcontrib>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</creatorcontrib><description>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad3915</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Coronal loops ; Field strength ; Life span ; Lorentz force ; Magnetic fields ; Magnetohydrodynamic simulation ; Magnetohydrodynamics ; Multiphase ; Plasma pressure ; Seismology ; Solar flares ; Solar physics ; Three dimensional models ; Topology</subject><ispartof>The Astrophysical journal, 2024-06, Vol.967 (2), p.82</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</cites><orcidid>0000-0003-1529-4681 ; 0000-0001-5045-827X ; 0000-0003-3544-2733 ; 0000-0002-1402-923X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad3915/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Ruan, Wenzhi</creatorcontrib><creatorcontrib>Keppens, Rony</creatorcontrib><creatorcontrib>Yan, Limei</creatorcontrib><creatorcontrib>Antolin, Patrick</creatorcontrib><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</description><subject>Coronal loops</subject><subject>Field strength</subject><subject>Life span</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamics</subject><subject>Multiphase</subject><subject>Plasma pressure</subject><subject>Seismology</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1P3DAQxa2qSN0uvXO0VI4E_JHENrcKsS3Sol5oy82a-GOT7RIH2zksfz1ZguiFnkbz9OY3TzMInVByzmUpLmjFZVHySlyA5YpWH9DiTfqIFoSQsqi5uP-EPqe0PbRMqQX6fdc6vA7R9fkJr0I0DkPGf0L8e4lvx13uhhaSw7ew6V0O7d7GYPc9PHQm4dzGMG7aMGYMeLWDOJE679IA_TE68rBL7strXaJfq-u7qx_F-uf3m6tv68JwJnPB67IUDfENMA8ODJNS8sp4VldlI6mwNSfQWEO8EwqY8DUoQ6pGklpIZRu-RDcz1wbY6iF2DxD3OkCnX4QQNxpi7szOaWAl5zWnUk1w2lTAKLPUKt-o0ljDJ9bXmTXE8Di6lPU2jLGf4mtOKiEZ4VO6JSKzy8SQUnT-bSsl-vAJfTi7Ppxdz5-YRk7nkS4M_5gwbLWqhWZaMj1YP9nO3rH9l_oMsCmVqQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ruan, Wenzhi</creator><creator>Keppens, Rony</creator><creator>Yan, Limei</creator><creator>Antolin, Patrick</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1529-4681</orcidid><orcidid>https://orcid.org/0000-0001-5045-827X</orcidid><orcidid>https://orcid.org/0000-0003-3544-2733</orcidid><orcidid>https://orcid.org/0000-0002-1402-923X</orcidid></search><sort><creationdate>20240601</creationdate><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><author>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coronal loops</topic><topic>Field strength</topic><topic>Life span</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamics</topic><topic>Multiphase</topic><topic>Plasma pressure</topic><topic>Seismology</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Wenzhi</creatorcontrib><creatorcontrib>Keppens, Rony</creatorcontrib><creatorcontrib>Yan, Limei</creatorcontrib><creatorcontrib>Antolin, Patrick</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Wenzhi</au><au>Keppens, Rony</au><au>Yan, Limei</au><au>Antolin, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>967</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad3915</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1529-4681</orcidid><orcidid>https://orcid.org/0000-0001-5045-827X</orcidid><orcidid>https://orcid.org/0000-0003-3544-2733</orcidid><orcidid>https://orcid.org/0000-0002-1402-923X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2024-06, Vol.967 (2), p.82
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ad3915
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Coronal loops
Field strength
Life span
Lorentz force
Magnetic fields
Magnetohydrodynamic simulation
Magnetohydrodynamics
Multiphase
Plasma pressure
Seismology
Solar flares
Solar physics
Three dimensional models
Topology
title The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lorentz%20Force%20at%20Work:%20Multiphase%20Magnetohydrodynamics%20throughout%20a%20Flare%20Lifespan&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ruan,%20Wenzhi&rft.date=2024-06-01&rft.volume=967&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad3915&rft_dat=%3Cproquest_cross%3E3057820388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057820388&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a2433631896541b5a212d1d9fb94cdc3&rfr_iscdi=true