The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan
The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation,...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2024-06, Vol.967 (2), p.82 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 82 |
container_title | The Astrophysical journal |
container_volume | 967 |
creator | Ruan, Wenzhi Keppens, Rony Yan, Limei Antolin, Patrick |
description | The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations. |
doi_str_mv | 10.3847/1538-4357/ad3915 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ad3915</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a2433631896541b5a212d1d9fb94cdc3</doaj_id><sourcerecordid>3057820388</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</originalsourceid><addsrcrecordid>eNp1kc1P3DAQxa2qSN0uvXO0VI4E_JHENrcKsS3Sol5oy82a-GOT7RIH2zksfz1ZguiFnkbz9OY3TzMInVByzmUpLmjFZVHySlyA5YpWH9DiTfqIFoSQsqi5uP-EPqe0PbRMqQX6fdc6vA7R9fkJr0I0DkPGf0L8e4lvx13uhhaSw7ew6V0O7d7GYPc9PHQm4dzGMG7aMGYMeLWDOJE679IA_TE68rBL7strXaJfq-u7qx_F-uf3m6tv68JwJnPB67IUDfENMA8ODJNS8sp4VldlI6mwNSfQWEO8EwqY8DUoQ6pGklpIZRu-RDcz1wbY6iF2DxD3OkCnX4QQNxpi7szOaWAl5zWnUk1w2lTAKLPUKt-o0ljDJ9bXmTXE8Di6lPU2jLGf4mtOKiEZ4VO6JSKzy8SQUnT-bSsl-vAJfTi7Ppxdz5-YRk7nkS4M_5gwbLWqhWZaMj1YP9nO3rH9l_oMsCmVqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3057820388</pqid></control><display><type>article</type><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</creator><creatorcontrib>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</creatorcontrib><description>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad3915</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Coronal loops ; Field strength ; Life span ; Lorentz force ; Magnetic fields ; Magnetohydrodynamic simulation ; Magnetohydrodynamics ; Multiphase ; Plasma pressure ; Seismology ; Solar flares ; Solar physics ; Three dimensional models ; Topology</subject><ispartof>The Astrophysical journal, 2024-06, Vol.967 (2), p.82</ispartof><rights>2024. The Author(s). Published by the American Astronomical Society.</rights><rights>2024. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</cites><orcidid>0000-0003-1529-4681 ; 0000-0001-5045-827X ; 0000-0003-3544-2733 ; 0000-0002-1402-923X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad3915/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,2100,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Ruan, Wenzhi</creatorcontrib><creatorcontrib>Keppens, Rony</creatorcontrib><creatorcontrib>Yan, Limei</creatorcontrib><creatorcontrib>Antolin, Patrick</creatorcontrib><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</description><subject>Coronal loops</subject><subject>Field strength</subject><subject>Life span</subject><subject>Lorentz force</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamic simulation</subject><subject>Magnetohydrodynamics</subject><subject>Multiphase</subject><subject>Plasma pressure</subject><subject>Seismology</subject><subject>Solar flares</subject><subject>Solar physics</subject><subject>Three dimensional models</subject><subject>Topology</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1P3DAQxa2qSN0uvXO0VI4E_JHENrcKsS3Sol5oy82a-GOT7RIH2zksfz1ZguiFnkbz9OY3TzMInVByzmUpLmjFZVHySlyA5YpWH9DiTfqIFoSQsqi5uP-EPqe0PbRMqQX6fdc6vA7R9fkJr0I0DkPGf0L8e4lvx13uhhaSw7ew6V0O7d7GYPc9PHQm4dzGMG7aMGYMeLWDOJE679IA_TE68rBL7strXaJfq-u7qx_F-uf3m6tv68JwJnPB67IUDfENMA8ODJNS8sp4VldlI6mwNSfQWEO8EwqY8DUoQ6pGklpIZRu-RDcz1wbY6iF2DxD3OkCnX4QQNxpi7szOaWAl5zWnUk1w2lTAKLPUKt-o0ljDJ9bXmTXE8Di6lPU2jLGf4mtOKiEZ4VO6JSKzy8SQUnT-bSsl-vAJfTi7Ppxdz5-YRk7nkS4M_5gwbLWqhWZaMj1YP9nO3rH9l_oMsCmVqQ</recordid><startdate>20240601</startdate><enddate>20240601</enddate><creator>Ruan, Wenzhi</creator><creator>Keppens, Rony</creator><creator>Yan, Limei</creator><creator>Antolin, Patrick</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1529-4681</orcidid><orcidid>https://orcid.org/0000-0001-5045-827X</orcidid><orcidid>https://orcid.org/0000-0003-3544-2733</orcidid><orcidid>https://orcid.org/0000-0002-1402-923X</orcidid></search><sort><creationdate>20240601</creationdate><title>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</title><author>Ruan, Wenzhi ; Keppens, Rony ; Yan, Limei ; Antolin, Patrick</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-36447b0fba2faeac288835cf2654b817d630abdc0fe79a27f6a9c05b806789db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Coronal loops</topic><topic>Field strength</topic><topic>Life span</topic><topic>Lorentz force</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamic simulation</topic><topic>Magnetohydrodynamics</topic><topic>Multiphase</topic><topic>Plasma pressure</topic><topic>Seismology</topic><topic>Solar flares</topic><topic>Solar physics</topic><topic>Three dimensional models</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruan, Wenzhi</creatorcontrib><creatorcontrib>Keppens, Rony</creatorcontrib><creatorcontrib>Yan, Limei</creatorcontrib><creatorcontrib>Antolin, Patrick</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruan, Wenzhi</au><au>Keppens, Rony</au><au>Yan, Limei</au><au>Antolin, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2024-06-01</date><risdate>2024</risdate><volume>967</volume><issue>2</issue><spage>82</spage><pages>82-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The hour-long, gradual phase of solar flares is well observed across the electromagnetic spectrum, demonstrating many multiphase aspects, where cold condensations form within the heated post-flare system, but a complete 3D model is lacking. Using a state-of-the-art 3D magnetohydrodynamic simulation, we identify the key role played by the Lorentz force through the entire flare lifespan, and show that slow variations in the post-flare magnetic field achieve the bulk of the energy release. Synthetic images in multiple passbands closely match flare observations, and we quantify the role of conductive, radiative, and Lorentz force work contributions from flare onset to decay. This highlights how the non-force-free nature of the magnetic topology is crucial to trigger Rayleigh–Taylor dynamics, observed as waving coronal rays in extreme ultraviolet observations. Our C-class solar flare reproduces multiphase aspects such as post-flare coronal rain. In agreement with observations, we find strands of cooler plasma forming spontaneously by catastrophic cooling, leading to cool plasma draining down the post-flare loops. As there is force balance between magnetic pressure and tension and the plasma pressure in gradual-phase flare loops, this has potential for coronal seismology to decipher the magnetic field strength variation from observations.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad3915</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1529-4681</orcidid><orcidid>https://orcid.org/0000-0001-5045-827X</orcidid><orcidid>https://orcid.org/0000-0003-3544-2733</orcidid><orcidid>https://orcid.org/0000-0002-1402-923X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2024-06, Vol.967 (2), p.82 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_ad3915 |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Coronal loops Field strength Life span Lorentz force Magnetic fields Magnetohydrodynamic simulation Magnetohydrodynamics Multiphase Plasma pressure Seismology Solar flares Solar physics Three dimensional models Topology |
title | The Lorentz Force at Work: Multiphase Magnetohydrodynamics throughout a Flare Lifespan |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T04%3A53%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Lorentz%20Force%20at%20Work:%20Multiphase%20Magnetohydrodynamics%20throughout%20a%20Flare%20Lifespan&rft.jtitle=The%20Astrophysical%20journal&rft.au=Ruan,%20Wenzhi&rft.date=2024-06-01&rft.volume=967&rft.issue=2&rft.spage=82&rft.pages=82-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad3915&rft_dat=%3Cproquest_cross%3E3057820388%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=3057820388&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_a2433631896541b5a212d1d9fb94cdc3&rfr_iscdi=true |