Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines

We present a new simulation setup using the MURaM radiative MHD code that allows the study of the formation of collisional polarity inversion lines (cPILs) in the photosphere and the coronal response including flares. In this scheme, we start with a bipolar sunspot configuration and set the spots on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-10, Vol.955 (2), p.105
Hauptverfasser: Rempel, Matthias, Chintzoglou, Georgios, Cheung, Mark C. M., Fan, Yuhong, Kleint, Lucia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 105
container_title The Astrophysical journal
container_volume 955
creator Rempel, Matthias
Chintzoglou, Georgios
Cheung, Mark C. M.
Fan, Yuhong
Kleint, Lucia
description We present a new simulation setup using the MURaM radiative MHD code that allows the study of the formation of collisional polarity inversion lines (cPILs) in the photosphere and the coronal response including flares. In this scheme, we start with a bipolar sunspot configuration and set the spots on collision course by imposing the appropriate velocity field at the footpoints in the subphotospheric boundary. We produce different setups with the same initial spot separation by varying physical parameters such as the collision speed and minimum collision distance. While all setups lead to the formation of an EUV and X-ray sigmoid structure, only the cases with a close passing of the spots cause flares and mass eruptions. The energy release is in the 1–2 × 10 31 erg range, putting the simulated flares into the upper C-class to lower M-class range of GOES X-ray 1–8 Å flux. While the setup with the more distant passing of the spots does not lead to a flare, the corona is nonetheless substantially heated, suggesting noneruptive energy-release mechanisms. We focus our discussion on two particular setups that differ in spot coherence and resulting cPIL length persistence. We find different timings in the transition from a sheared magnetic arcade to magnetic flux rope (MFR); the setup with a large length but shorter duration cPIL produces a MFR during the eruption, while the MFR is preexisting in the setup with a large length and longer duration cPIL. While both result in flares of comparable strength and the eruption of a coronal mass ejection, the setup with preexisting MFR (and embedded filament) leads to an MFR eruption with a larger mass content.
doi_str_mv 10.3847/1538-4357/aced4d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_aced4d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_071246787ece4e239cd6dba03d34cb6b</doaj_id><sourcerecordid>2867589296</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-d8487485735d85d75c986c30b065d4ea01791670e2143b5c942fc93539744ccb3</originalsourceid><addsrcrecordid>eNp1UctKAzEUDaJgre5dDrh1bGbyXkq1WqgoPsBdyCS3mjJtxmQq-PfOdERXru49j3tCOAidFviCSComBSMyp4SJibHgqNtDo19qH40wxjTnRLweoqOUVj0slRohmIZ1E-EdNsl_QvZonDdtv93dXmVPfr2tOxg2KQvL7Dpum502q02ElJkqdGAa6tqnzmPq7CF0im-_svnmE2JPZgu_gXSMDpamTnDyM8foZXb9PL3NF_c38-nlIre04G3uJJWCSiYIc5I5wayS3BJcYc4cBYMLoQouMJQFJVWn0nJpFWFECUqtrcgYzYdcF8xKN9GvTfzSwXi9I0J80ya23tagsShKyoUUYIFCSZR13FUGE0eorXifdTZkNTF8bCG1ehW2sftl0qXkgklVKt658OCyMaQUYfn7aoF1X4zuW9B9C3oopjs5H058aP4y_7V_A3Bzj3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2867589296</pqid></control><display><type>article</type><title>Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Rempel, Matthias ; Chintzoglou, Georgios ; Cheung, Mark C. M. ; Fan, Yuhong ; Kleint, Lucia</creator><creatorcontrib>Rempel, Matthias ; Chintzoglou, Georgios ; Cheung, Mark C. M. ; Fan, Yuhong ; Kleint, Lucia</creatorcontrib><description>We present a new simulation setup using the MURaM radiative MHD code that allows the study of the formation of collisional polarity inversion lines (cPILs) in the photosphere and the coronal response including flares. In this scheme, we start with a bipolar sunspot configuration and set the spots on collision course by imposing the appropriate velocity field at the footpoints in the subphotospheric boundary. We produce different setups with the same initial spot separation by varying physical parameters such as the collision speed and minimum collision distance. While all setups lead to the formation of an EUV and X-ray sigmoid structure, only the cases with a close passing of the spots cause flares and mass eruptions. The energy release is in the 1–2 × 10 31 erg range, putting the simulated flares into the upper C-class to lower M-class range of GOES X-ray 1–8 Å flux. While the setup with the more distant passing of the spots does not lead to a flare, the corona is nonetheless substantially heated, suggesting noneruptive energy-release mechanisms. We focus our discussion on two particular setups that differ in spot coherence and resulting cPIL length persistence. We find different timings in the transition from a sheared magnetic arcade to magnetic flux rope (MFR); the setup with a large length but shorter duration cPIL produces a MFR during the eruption, while the MFR is preexisting in the setup with a large length and longer duration cPIL. While both result in flares of comparable strength and the eruption of a coronal mass ejection, the setup with preexisting MFR (and embedded filament) leads to an MFR eruption with a larger mass content.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/aced4d</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Active solar corona ; Astrophysics ; Collision dynamics ; Corona ; Coronal mass ejection ; Flares ; Inversion ; Magnetic flux ; Photosphere ; Physical properties ; Polarity ; Radiative magnetohydrodynamics ; Simulation ; Solar active region magnetic fields ; Solar active regions ; Solar coronal mass ejections ; Solar flares ; Solar photosphere ; Sunspots ; Velocity distribution</subject><ispartof>The Astrophysical journal, 2023-10, Vol.955 (2), p.105</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-d8487485735d85d75c986c30b065d4ea01791670e2143b5c942fc93539744ccb3</citedby><cites>FETCH-LOGICAL-c416t-d8487485735d85d75c986c30b065d4ea01791670e2143b5c942fc93539744ccb3</cites><orcidid>0000-0003-2110-9753 ; 0000-0002-7791-3241 ; 0000-0002-1253-8882 ; 0000-0001-5850-3119 ; 0000-0003-1027-0795</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/aced4d/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Rempel, Matthias</creatorcontrib><creatorcontrib>Chintzoglou, Georgios</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>Fan, Yuhong</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><title>Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We present a new simulation setup using the MURaM radiative MHD code that allows the study of the formation of collisional polarity inversion lines (cPILs) in the photosphere and the coronal response including flares. In this scheme, we start with a bipolar sunspot configuration and set the spots on collision course by imposing the appropriate velocity field at the footpoints in the subphotospheric boundary. We produce different setups with the same initial spot separation by varying physical parameters such as the collision speed and minimum collision distance. While all setups lead to the formation of an EUV and X-ray sigmoid structure, only the cases with a close passing of the spots cause flares and mass eruptions. The energy release is in the 1–2 × 10 31 erg range, putting the simulated flares into the upper C-class to lower M-class range of GOES X-ray 1–8 Å flux. While the setup with the more distant passing of the spots does not lead to a flare, the corona is nonetheless substantially heated, suggesting noneruptive energy-release mechanisms. We focus our discussion on two particular setups that differ in spot coherence and resulting cPIL length persistence. We find different timings in the transition from a sheared magnetic arcade to magnetic flux rope (MFR); the setup with a large length but shorter duration cPIL produces a MFR during the eruption, while the MFR is preexisting in the setup with a large length and longer duration cPIL. While both result in flares of comparable strength and the eruption of a coronal mass ejection, the setup with preexisting MFR (and embedded filament) leads to an MFR eruption with a larger mass content.</description><subject>Active solar corona</subject><subject>Astrophysics</subject><subject>Collision dynamics</subject><subject>Corona</subject><subject>Coronal mass ejection</subject><subject>Flares</subject><subject>Inversion</subject><subject>Magnetic flux</subject><subject>Photosphere</subject><subject>Physical properties</subject><subject>Polarity</subject><subject>Radiative magnetohydrodynamics</subject><subject>Simulation</subject><subject>Solar active region magnetic fields</subject><subject>Solar active regions</subject><subject>Solar coronal mass ejections</subject><subject>Solar flares</subject><subject>Solar photosphere</subject><subject>Sunspots</subject><subject>Velocity distribution</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1UctKAzEUDaJgre5dDrh1bGbyXkq1WqgoPsBdyCS3mjJtxmQq-PfOdERXru49j3tCOAidFviCSComBSMyp4SJibHgqNtDo19qH40wxjTnRLweoqOUVj0slRohmIZ1E-EdNsl_QvZonDdtv93dXmVPfr2tOxg2KQvL7Dpum502q02ElJkqdGAa6tqnzmPq7CF0im-_svnmE2JPZgu_gXSMDpamTnDyM8foZXb9PL3NF_c38-nlIre04G3uJJWCSiYIc5I5wayS3BJcYc4cBYMLoQouMJQFJVWn0nJpFWFECUqtrcgYzYdcF8xKN9GvTfzSwXi9I0J80ya23tagsShKyoUUYIFCSZR13FUGE0eorXifdTZkNTF8bCG1ehW2sftl0qXkgklVKt658OCyMaQUYfn7aoF1X4zuW9B9C3oopjs5H058aP4y_7V_A3Bzj3k</recordid><startdate>20231001</startdate><enddate>20231001</enddate><creator>Rempel, Matthias</creator><creator>Chintzoglou, Georgios</creator><creator>Cheung, Mark C. M.</creator><creator>Fan, Yuhong</creator><creator>Kleint, Lucia</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0002-7791-3241</orcidid><orcidid>https://orcid.org/0000-0002-1253-8882</orcidid><orcidid>https://orcid.org/0000-0001-5850-3119</orcidid><orcidid>https://orcid.org/0000-0003-1027-0795</orcidid></search><sort><creationdate>20231001</creationdate><title>Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines</title><author>Rempel, Matthias ; Chintzoglou, Georgios ; Cheung, Mark C. M. ; Fan, Yuhong ; Kleint, Lucia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-d8487485735d85d75c986c30b065d4ea01791670e2143b5c942fc93539744ccb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Active solar corona</topic><topic>Astrophysics</topic><topic>Collision dynamics</topic><topic>Corona</topic><topic>Coronal mass ejection</topic><topic>Flares</topic><topic>Inversion</topic><topic>Magnetic flux</topic><topic>Photosphere</topic><topic>Physical properties</topic><topic>Polarity</topic><topic>Radiative magnetohydrodynamics</topic><topic>Simulation</topic><topic>Solar active region magnetic fields</topic><topic>Solar active regions</topic><topic>Solar coronal mass ejections</topic><topic>Solar flares</topic><topic>Solar photosphere</topic><topic>Sunspots</topic><topic>Velocity distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rempel, Matthias</creatorcontrib><creatorcontrib>Chintzoglou, Georgios</creatorcontrib><creatorcontrib>Cheung, Mark C. M.</creatorcontrib><creatorcontrib>Fan, Yuhong</creatorcontrib><creatorcontrib>Kleint, Lucia</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rempel, Matthias</au><au>Chintzoglou, Georgios</au><au>Cheung, Mark C. M.</au><au>Fan, Yuhong</au><au>Kleint, Lucia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-10-01</date><risdate>2023</risdate><volume>955</volume><issue>2</issue><spage>105</spage><pages>105-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We present a new simulation setup using the MURaM radiative MHD code that allows the study of the formation of collisional polarity inversion lines (cPILs) in the photosphere and the coronal response including flares. In this scheme, we start with a bipolar sunspot configuration and set the spots on collision course by imposing the appropriate velocity field at the footpoints in the subphotospheric boundary. We produce different setups with the same initial spot separation by varying physical parameters such as the collision speed and minimum collision distance. While all setups lead to the formation of an EUV and X-ray sigmoid structure, only the cases with a close passing of the spots cause flares and mass eruptions. The energy release is in the 1–2 × 10 31 erg range, putting the simulated flares into the upper C-class to lower M-class range of GOES X-ray 1–8 Å flux. While the setup with the more distant passing of the spots does not lead to a flare, the corona is nonetheless substantially heated, suggesting noneruptive energy-release mechanisms. We focus our discussion on two particular setups that differ in spot coherence and resulting cPIL length persistence. We find different timings in the transition from a sheared magnetic arcade to magnetic flux rope (MFR); the setup with a large length but shorter duration cPIL produces a MFR during the eruption, while the MFR is preexisting in the setup with a large length and longer duration cPIL. While both result in flares of comparable strength and the eruption of a coronal mass ejection, the setup with preexisting MFR (and embedded filament) leads to an MFR eruption with a larger mass content.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/aced4d</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-2110-9753</orcidid><orcidid>https://orcid.org/0000-0002-7791-3241</orcidid><orcidid>https://orcid.org/0000-0002-1253-8882</orcidid><orcidid>https://orcid.org/0000-0001-5850-3119</orcidid><orcidid>https://orcid.org/0000-0003-1027-0795</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-10, Vol.955 (2), p.105
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_aced4d
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Active solar corona
Astrophysics
Collision dynamics
Corona
Coronal mass ejection
Flares
Inversion
Magnetic flux
Photosphere
Physical properties
Polarity
Radiative magnetohydrodynamics
Simulation
Solar active region magnetic fields
Solar active regions
Solar coronal mass ejections
Solar flares
Solar photosphere
Sunspots
Velocity distribution
title Comprehensive Radiative MHD Simulations of Eruptive Flares above Collisional Polarity Inversion Lines
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T07%3A49%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comprehensive%20Radiative%20MHD%20Simulations%20of%20Eruptive%20Flares%20above%20Collisional%20Polarity%20Inversion%20Lines&rft.jtitle=The%20Astrophysical%20journal&rft.au=Rempel,%20Matthias&rft.date=2023-10-01&rft.volume=955&rft.issue=2&rft.spage=105&rft.pages=105-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/aced4d&rft_dat=%3Cproquest_cross%3E2867589296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2867589296&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_071246787ece4e239cd6dba03d34cb6b&rfr_iscdi=true