Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field

Mars has undergone a substantial water loss, transforming from the early warm and wet state to the current cold and arid state. Observations and modeling efforts suggest that hydrogen escape is a metric of water loss on Mars. As a consequence of the vertical transport of water vapor by deep convecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-08, Vol.953 (1), p.71
Hauptverfasser: Sun, Mingyang, Gu, Hao, Cui, Jun, Wu, Xiaoshu, Huang, Xu, Ni, Yangxin, Wu, Zhaopeng, Li, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 71
container_title The Astrophysical journal
container_volume 953
creator Sun, Mingyang
Gu, Hao
Cui, Jun
Wu, Xiaoshu
Huang, Xu
Ni, Yangxin
Wu, Zhaopeng
Li, Lei
description Mars has undergone a substantial water loss, transforming from the early warm and wet state to the current cold and arid state. Observations and modeling efforts suggest that hydrogen escape is a metric of water loss on Mars. As a consequence of the vertical transport of water vapor by deep convection, hydrogen escape is significantly enhanced during Martian global dust storms. Motivated by the established scenario that the horizontal wind field could substantially enhance thermal escape, here we evaluate, for the first time, how the escape of H and H 2 on Mars during a typical global dust storm is modified by the enhanced horizontal wind field during the period. By combining kinetic model calculations and the Mars Climate Database outputs, we reach the conclusion that a nonnegligible enhancement of the H and H 2 escape flux could be driven by horizontal winds near the exobase, reaching 15% for H and 60% for H 2 at dawn near the equator during the dust storm. Although the enhancement of the global hydrogen escape rate by the horizontal wind is insignificant, it plays a crucial role in the redistribution of H and H 2 escape flux. The results presented here make useful contributions to a thorough understanding of enhanced hydrogen escape during the global dust storms.
doi_str_mv 10.3847/1538-4357/ace43e
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ace43e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_f6da83e5e9c8471a9fe2a6b036d40ab9</doaj_id><sourcerecordid>2845648195</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-22b8a9e0f140760dbdd102897efe697229e176a7152922f2d449d040de1422cb3</originalsourceid><addsrcrecordid>eNp1kTFv2zAQRomiAeIm3TMSaMcqJilKFLsViR0bSJAhKZKNOJFHR4YsqqQ8OL8-clWkSzsdeHj37sCPkAvOLvNKqjkv8iqTeaHmYFHm-IHM3lsfyYwxJrMyV8-n5FNK2-NTaD0jdtG9QGfR0dXBxbDBji6ShR5p6OgdxETdPjbdhg4vSAXjFb1pQw0tvd6ngT4MIe6-0_WuBzvQ4OkqxOY1dMMIPDWdo8sGW3dOTjy0CT__qWfk53LxeLXKbu9v1lc_bjMrZTFkQtQVaGSeS6ZK5mrnOBOVVuix1EoIjVyVoHghtBBeOCm1Y5I55FIIW-dnZD15XYCt6WOzg3gwARrzuxHixkAcGtui8aWDKscCtR0_j4P2KKCsWV46yaDWo-vL5Opj-LXHNJht2MduPN-IShalrLguRopNlI0hpYj-fStn5hiLOWZgjhmYKZZx5Os00oT-rxP6rRl9hhvFTe_8iH37B_Zf6xths5jl</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2845648195</pqid></control><display><type>article</type><title>Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Sun, Mingyang ; Gu, Hao ; Cui, Jun ; Wu, Xiaoshu ; Huang, Xu ; Ni, Yangxin ; Wu, Zhaopeng ; Li, Lei</creator><creatorcontrib>Sun, Mingyang ; Gu, Hao ; Cui, Jun ; Wu, Xiaoshu ; Huang, Xu ; Ni, Yangxin ; Wu, Zhaopeng ; Li, Lei</creatorcontrib><description>Mars has undergone a substantial water loss, transforming from the early warm and wet state to the current cold and arid state. Observations and modeling efforts suggest that hydrogen escape is a metric of water loss on Mars. As a consequence of the vertical transport of water vapor by deep convection, hydrogen escape is significantly enhanced during Martian global dust storms. Motivated by the established scenario that the horizontal wind field could substantially enhance thermal escape, here we evaluate, for the first time, how the escape of H and H 2 on Mars during a typical global dust storm is modified by the enhanced horizontal wind field during the period. By combining kinetic model calculations and the Mars Climate Database outputs, we reach the conclusion that a nonnegligible enhancement of the H and H 2 escape flux could be driven by horizontal winds near the exobase, reaching 15% for H and 60% for H 2 at dawn near the equator during the dust storm. Although the enhancement of the global hydrogen escape rate by the horizontal wind is insignificant, it plays a crucial role in the redistribution of H and H 2 escape flux. The results presented here make useful contributions to a thorough understanding of enhanced hydrogen escape during the global dust storms.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ace43e</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Astrophysics ; Climate models ; Dust ; Dust storms ; Exosphere ; Hydrogen ; Mars ; Mars climate ; Mars dust ; Planetary atmospheres ; Solar system planets ; Storms ; Upper atmosphere ; Water loss ; Water vapor ; Wind</subject><ispartof>The Astrophysical journal, 2023-08, Vol.953 (1), p.71</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-22b8a9e0f140760dbdd102897efe697229e176a7152922f2d449d040de1422cb3</citedby><cites>FETCH-LOGICAL-c445t-22b8a9e0f140760dbdd102897efe697229e176a7152922f2d449d040de1422cb3</cites><orcidid>0000-0002-9831-0618 ; 0000-0003-4070-2050 ; 0000-0001-8089-9164 ; 0000-0002-4721-8184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ace43e/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2095,27903,27904,38869,53845</link.rule.ids></links><search><creatorcontrib>Sun, Mingyang</creatorcontrib><creatorcontrib>Gu, Hao</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Wu, Xiaoshu</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Ni, Yangxin</creatorcontrib><creatorcontrib>Wu, Zhaopeng</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><title>Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Mars has undergone a substantial water loss, transforming from the early warm and wet state to the current cold and arid state. Observations and modeling efforts suggest that hydrogen escape is a metric of water loss on Mars. As a consequence of the vertical transport of water vapor by deep convection, hydrogen escape is significantly enhanced during Martian global dust storms. Motivated by the established scenario that the horizontal wind field could substantially enhance thermal escape, here we evaluate, for the first time, how the escape of H and H 2 on Mars during a typical global dust storm is modified by the enhanced horizontal wind field during the period. By combining kinetic model calculations and the Mars Climate Database outputs, we reach the conclusion that a nonnegligible enhancement of the H and H 2 escape flux could be driven by horizontal winds near the exobase, reaching 15% for H and 60% for H 2 at dawn near the equator during the dust storm. Although the enhancement of the global hydrogen escape rate by the horizontal wind is insignificant, it plays a crucial role in the redistribution of H and H 2 escape flux. The results presented here make useful contributions to a thorough understanding of enhanced hydrogen escape during the global dust storms.</description><subject>Astrophysics</subject><subject>Climate models</subject><subject>Dust</subject><subject>Dust storms</subject><subject>Exosphere</subject><subject>Hydrogen</subject><subject>Mars</subject><subject>Mars climate</subject><subject>Mars dust</subject><subject>Planetary atmospheres</subject><subject>Solar system planets</subject><subject>Storms</subject><subject>Upper atmosphere</subject><subject>Water loss</subject><subject>Water vapor</subject><subject>Wind</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kTFv2zAQRomiAeIm3TMSaMcqJilKFLsViR0bSJAhKZKNOJFHR4YsqqQ8OL8-clWkSzsdeHj37sCPkAvOLvNKqjkv8iqTeaHmYFHm-IHM3lsfyYwxJrMyV8-n5FNK2-NTaD0jdtG9QGfR0dXBxbDBji6ShR5p6OgdxETdPjbdhg4vSAXjFb1pQw0tvd6ngT4MIe6-0_WuBzvQ4OkqxOY1dMMIPDWdo8sGW3dOTjy0CT__qWfk53LxeLXKbu9v1lc_bjMrZTFkQtQVaGSeS6ZK5mrnOBOVVuix1EoIjVyVoHghtBBeOCm1Y5I55FIIW-dnZD15XYCt6WOzg3gwARrzuxHixkAcGtui8aWDKscCtR0_j4P2KKCsWV46yaDWo-vL5Opj-LXHNJht2MduPN-IShalrLguRopNlI0hpYj-fStn5hiLOWZgjhmYKZZx5Os00oT-rxP6rRl9hhvFTe_8iH37B_Zf6xths5jl</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Sun, Mingyang</creator><creator>Gu, Hao</creator><creator>Cui, Jun</creator><creator>Wu, Xiaoshu</creator><creator>Huang, Xu</creator><creator>Ni, Yangxin</creator><creator>Wu, Zhaopeng</creator><creator>Li, Lei</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9831-0618</orcidid><orcidid>https://orcid.org/0000-0003-4070-2050</orcidid><orcidid>https://orcid.org/0000-0001-8089-9164</orcidid><orcidid>https://orcid.org/0000-0002-4721-8184</orcidid></search><sort><creationdate>20230801</creationdate><title>Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field</title><author>Sun, Mingyang ; Gu, Hao ; Cui, Jun ; Wu, Xiaoshu ; Huang, Xu ; Ni, Yangxin ; Wu, Zhaopeng ; Li, Lei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-22b8a9e0f140760dbdd102897efe697229e176a7152922f2d449d040de1422cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Astrophysics</topic><topic>Climate models</topic><topic>Dust</topic><topic>Dust storms</topic><topic>Exosphere</topic><topic>Hydrogen</topic><topic>Mars</topic><topic>Mars climate</topic><topic>Mars dust</topic><topic>Planetary atmospheres</topic><topic>Solar system planets</topic><topic>Storms</topic><topic>Upper atmosphere</topic><topic>Water loss</topic><topic>Water vapor</topic><topic>Wind</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Mingyang</creatorcontrib><creatorcontrib>Gu, Hao</creatorcontrib><creatorcontrib>Cui, Jun</creatorcontrib><creatorcontrib>Wu, Xiaoshu</creatorcontrib><creatorcontrib>Huang, Xu</creatorcontrib><creatorcontrib>Ni, Yangxin</creatorcontrib><creatorcontrib>Wu, Zhaopeng</creatorcontrib><creatorcontrib>Li, Lei</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Mingyang</au><au>Gu, Hao</au><au>Cui, Jun</au><au>Wu, Xiaoshu</au><au>Huang, Xu</au><au>Ni, Yangxin</au><au>Wu, Zhaopeng</au><au>Li, Lei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-08-01</date><risdate>2023</risdate><volume>953</volume><issue>1</issue><spage>71</spage><pages>71-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Mars has undergone a substantial water loss, transforming from the early warm and wet state to the current cold and arid state. Observations and modeling efforts suggest that hydrogen escape is a metric of water loss on Mars. As a consequence of the vertical transport of water vapor by deep convection, hydrogen escape is significantly enhanced during Martian global dust storms. Motivated by the established scenario that the horizontal wind field could substantially enhance thermal escape, here we evaluate, for the first time, how the escape of H and H 2 on Mars during a typical global dust storm is modified by the enhanced horizontal wind field during the period. By combining kinetic model calculations and the Mars Climate Database outputs, we reach the conclusion that a nonnegligible enhancement of the H and H 2 escape flux could be driven by horizontal winds near the exobase, reaching 15% for H and 60% for H 2 at dawn near the equator during the dust storm. Although the enhancement of the global hydrogen escape rate by the horizontal wind is insignificant, it plays a crucial role in the redistribution of H and H 2 escape flux. The results presented here make useful contributions to a thorough understanding of enhanced hydrogen escape during the global dust storms.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ace43e</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-9831-0618</orcidid><orcidid>https://orcid.org/0000-0003-4070-2050</orcidid><orcidid>https://orcid.org/0000-0001-8089-9164</orcidid><orcidid>https://orcid.org/0000-0002-4721-8184</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-08, Vol.953 (1), p.71
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ace43e
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Astrophysics
Climate models
Dust
Dust storms
Exosphere
Hydrogen
Mars
Mars climate
Mars dust
Planetary atmospheres
Solar system planets
Storms
Upper atmosphere
Water loss
Water vapor
Wind
title Enhanced Hydrogen Escape on Mars during the 2018 Global Dust Storm: Impact of Horizontal Wind Field
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T00%3A39%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20Hydrogen%20Escape%20on%20Mars%20during%20the%202018%20Global%20Dust%20Storm:%20Impact%20of%20Horizontal%20Wind%20Field&rft.jtitle=The%20Astrophysical%20journal&rft.au=Sun,%20Mingyang&rft.date=2023-08-01&rft.volume=953&rft.issue=1&rft.spage=71&rft.pages=71-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ace43e&rft_dat=%3Cproquest_cross%3E2845648195%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2845648195&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_f6da83e5e9c8471a9fe2a6b036d40ab9&rfr_iscdi=true