An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion
Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be th...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2023-04, Vol.946 (2), p.60 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 60 |
container_title | The Astrophysical journal |
container_volume | 946 |
creator | Lyra, Wladimir Johansen, Anders Cañas, Manuel H. Yang, Chao‐Chin |
description | Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10
−6
to 10
−4
M
⊕
, over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth. |
doi_str_mv | 10.3847/1538-4357/acaf5b |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_acaf5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e90e478df524de8808a399461c29a05</doaj_id><sourcerecordid>2793066539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxhdR8Ky--xjQR7dNNslu8ngUrYUD76GCb8MkO_H22F7WZI9y_705t1QK4sMQMvnmN5n5quq94JfSqO5KaGlqJXV3hR6Ddi-q1VPqZbXinKu6ld2P19WbnPfna2PtqnLrA1sfcDzNg8eR3e0ophMLMbF5R-wmxYd5x0KK92w74oFmysM9jpnN8TGRmTuxbRxP_ZAnSpnYlpwbia29TzQP8fC2ehVKCb17PC-q718-311_rTffbm6v15vaa6Hm2mqLxhoTOInOi74X2gsn0HWtQmlCZ3kbyGDTo-NS-6CVJe5DedRG90peVLcLt4-4hymVj6YTRBzgTyKmn4CpjDkSSLKcVGf6oBvVkzHcoLRWtcI3FrkurM3Cyg80Hd0z2nicSrgSkAnKrhtE3wB6K0F5joC9DOA4b53zpBvvCu7DgptS_HWkPMM-HlNZe4ams5K3rZa2qPii8inmnCg8tRUczibD2VE4OwqLyaXk01IyxOkv8z_yj_-Q47SHMjs00HKY-iB_A7hetng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793066539</pqid></control><display><type>article</type><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Alma/SFX Local Collection</source><creator>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</creator><creatorcontrib>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</creatorcontrib><description>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10
−6
to 10
−4
M
⊕
, over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/acaf5b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astronomi, astrofysik och kosmologi ; Astronomy, Astrophysics and Cosmology ; Astrophysics ; Density distribution ; Distribution functions ; Exact solutions ; Fysik ; Initial mass function ; Mass distribution ; Natural Sciences ; Naturvetenskap ; Physical Sciences ; Planet formation ; Planetary system formation ; Planets ; Two dimensional analysis</subject><ispartof>The Astrophysical journal, 2023-04, Vol.946 (2), p.60</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</citedby><cites>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</cites><orcidid>0000-0003-2589-5034 ; 0000-0002-3768-7542 ; 0000-0002-5893-6165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/acaf5b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,552,780,784,864,885,2102,27924,27925,38890,53867</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/af52aac2-ac93-4c0a-ad3f-b006bbce52cb$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyra, Wladimir</creatorcontrib><creatorcontrib>Johansen, Anders</creatorcontrib><creatorcontrib>Cañas, Manuel H.</creatorcontrib><creatorcontrib>Yang, Chao‐Chin</creatorcontrib><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10
−6
to 10
−4
M
⊕
, over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</description><subject>Accretion disks</subject><subject>Astronomi, astrofysik och kosmologi</subject><subject>Astronomy, Astrophysics and Cosmology</subject><subject>Astrophysics</subject><subject>Density distribution</subject><subject>Distribution functions</subject><subject>Exact solutions</subject><subject>Fysik</subject><subject>Initial mass function</subject><subject>Mass distribution</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Sciences</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Two dimensional analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp9kdFrFDEQxhdR8Ky--xjQR7dNNslu8ngUrYUD76GCb8MkO_H22F7WZI9y_705t1QK4sMQMvnmN5n5quq94JfSqO5KaGlqJXV3hR6Ddi-q1VPqZbXinKu6ld2P19WbnPfna2PtqnLrA1sfcDzNg8eR3e0ophMLMbF5R-wmxYd5x0KK92w74oFmysM9jpnN8TGRmTuxbRxP_ZAnSpnYlpwbia29TzQP8fC2ehVKCb17PC-q718-311_rTffbm6v15vaa6Hm2mqLxhoTOInOi74X2gsn0HWtQmlCZ3kbyGDTo-NS-6CVJe5DedRG90peVLcLt4-4hymVj6YTRBzgTyKmn4CpjDkSSLKcVGf6oBvVkzHcoLRWtcI3FrkurM3Cyg80Hd0z2nicSrgSkAnKrhtE3wB6K0F5joC9DOA4b53zpBvvCu7DgptS_HWkPMM-HlNZe4ams5K3rZa2qPii8inmnCg8tRUczibD2VE4OwqLyaXk01IyxOkv8z_yj_-Q47SHMjs00HKY-iB_A7hetng</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Lyra, Wladimir</creator><creator>Johansen, Anders</creator><creator>Cañas, Manuel H.</creator><creator>Yang, Chao‐Chin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2589-5034</orcidid><orcidid>https://orcid.org/0000-0002-3768-7542</orcidid><orcidid>https://orcid.org/0000-0002-5893-6165</orcidid></search><sort><creationdate>20230401</creationdate><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><author>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accretion disks</topic><topic>Astronomi, astrofysik och kosmologi</topic><topic>Astronomy, Astrophysics and Cosmology</topic><topic>Astrophysics</topic><topic>Density distribution</topic><topic>Distribution functions</topic><topic>Exact solutions</topic><topic>Fysik</topic><topic>Initial mass function</topic><topic>Mass distribution</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Sciences</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyra, Wladimir</creatorcontrib><creatorcontrib>Johansen, Anders</creatorcontrib><creatorcontrib>Cañas, Manuel H.</creatorcontrib><creatorcontrib>Yang, Chao‐Chin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyra, Wladimir</au><au>Johansen, Anders</au><au>Cañas, Manuel H.</au><au>Yang, Chao‐Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>946</volume><issue>2</issue><spage>60</spage><pages>60-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10
−6
to 10
−4
M
⊕
, over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/acaf5b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2589-5034</orcidid><orcidid>https://orcid.org/0000-0002-3768-7542</orcidid><orcidid>https://orcid.org/0000-0002-5893-6165</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0004-637X |
ispartof | The Astrophysical journal, 2023-04, Vol.946 (2), p.60 |
issn | 0004-637X 1538-4357 |
language | eng |
recordid | cdi_crossref_primary_10_3847_1538_4357_acaf5b |
source | IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Alma/SFX Local Collection |
subjects | Accretion disks Astronomi, astrofysik och kosmologi Astronomy, Astrophysics and Cosmology Astrophysics Density distribution Distribution functions Exact solutions Fysik Initial mass function Mass distribution Natural Sciences Naturvetenskap Physical Sciences Planet formation Planetary system formation Planets Two dimensional analysis |
title | An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Theory%20for%20the%20Growth%20from%20Planetesimals%20to%20Planets%20by%20Polydisperse%20Pebble%20Accretion&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lyra,%20Wladimir&rft.date=2023-04-01&rft.volume=946&rft.issue=2&rft.spage=60&rft.pages=60-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/acaf5b&rft_dat=%3Cproquest_cross%3E2793066539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793066539&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3e90e478df524de8808a399461c29a05&rfr_iscdi=true |