An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion

Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-04, Vol.946 (2), p.60
Hauptverfasser: Lyra, Wladimir, Johansen, Anders, Cañas, Manuel H., Yang, Chao‐Chin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 60
container_title The Astrophysical journal
container_volume 946
creator Lyra, Wladimir
Johansen, Anders
Cañas, Manuel H.
Yang, Chao‐Chin
description Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10 −6 to 10 −4 M ⊕ , over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.
doi_str_mv 10.3847/1538-4357/acaf5b
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_acaf5b</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_3e90e478df524de8808a399461c29a05</doaj_id><sourcerecordid>2793066539</sourcerecordid><originalsourceid>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</originalsourceid><addsrcrecordid>eNp9kdFrFDEQxhdR8Ky--xjQR7dNNslu8ngUrYUD76GCb8MkO_H22F7WZI9y_705t1QK4sMQMvnmN5n5quq94JfSqO5KaGlqJXV3hR6Ddi-q1VPqZbXinKu6ld2P19WbnPfna2PtqnLrA1sfcDzNg8eR3e0ophMLMbF5R-wmxYd5x0KK92w74oFmysM9jpnN8TGRmTuxbRxP_ZAnSpnYlpwbia29TzQP8fC2ehVKCb17PC-q718-311_rTffbm6v15vaa6Hm2mqLxhoTOInOi74X2gsn0HWtQmlCZ3kbyGDTo-NS-6CVJe5DedRG90peVLcLt4-4hymVj6YTRBzgTyKmn4CpjDkSSLKcVGf6oBvVkzHcoLRWtcI3FrkurM3Cyg80Hd0z2nicSrgSkAnKrhtE3wB6K0F5joC9DOA4b53zpBvvCu7DgptS_HWkPMM-HlNZe4ams5K3rZa2qPii8inmnCg8tRUczibD2VE4OwqLyaXk01IyxOkv8z_yj_-Q47SHMjs00HKY-iB_A7hetng</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2793066539</pqid></control><display><type>article</type><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SWEPUB Freely available online</source><source>Alma/SFX Local Collection</source><creator>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</creator><creatorcontrib>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</creatorcontrib><description>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10 −6 to 10 −4 M ⊕ , over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/acaf5b</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Accretion disks ; Astronomi, astrofysik och kosmologi ; Astronomy, Astrophysics and Cosmology ; Astrophysics ; Density distribution ; Distribution functions ; Exact solutions ; Fysik ; Initial mass function ; Mass distribution ; Natural Sciences ; Naturvetenskap ; Physical Sciences ; Planet formation ; Planetary system formation ; Planets ; Two dimensional analysis</subject><ispartof>The Astrophysical journal, 2023-04, Vol.946 (2), p.60</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</citedby><cites>FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</cites><orcidid>0000-0003-2589-5034 ; 0000-0002-3768-7542 ; 0000-0002-5893-6165</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/acaf5b/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>230,314,552,780,784,864,885,2102,27924,27925,38890,53867</link.rule.ids><backlink>$$Uhttps://lup.lub.lu.se/record/af52aac2-ac93-4c0a-ad3f-b006bbce52cb$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Lyra, Wladimir</creatorcontrib><creatorcontrib>Johansen, Anders</creatorcontrib><creatorcontrib>Cañas, Manuel H.</creatorcontrib><creatorcontrib>Yang, Chao‐Chin</creatorcontrib><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10 −6 to 10 −4 M ⊕ , over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</description><subject>Accretion disks</subject><subject>Astronomi, astrofysik och kosmologi</subject><subject>Astronomy, Astrophysics and Cosmology</subject><subject>Astrophysics</subject><subject>Density distribution</subject><subject>Distribution functions</subject><subject>Exact solutions</subject><subject>Fysik</subject><subject>Initial mass function</subject><subject>Mass distribution</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Sciences</subject><subject>Planet formation</subject><subject>Planetary system formation</subject><subject>Planets</subject><subject>Two dimensional analysis</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNp9kdFrFDEQxhdR8Ky--xjQR7dNNslu8ngUrYUD76GCb8MkO_H22F7WZI9y_705t1QK4sMQMvnmN5n5quq94JfSqO5KaGlqJXV3hR6Ddi-q1VPqZbXinKu6ld2P19WbnPfna2PtqnLrA1sfcDzNg8eR3e0ophMLMbF5R-wmxYd5x0KK92w74oFmysM9jpnN8TGRmTuxbRxP_ZAnSpnYlpwbia29TzQP8fC2ehVKCb17PC-q718-311_rTffbm6v15vaa6Hm2mqLxhoTOInOi74X2gsn0HWtQmlCZ3kbyGDTo-NS-6CVJe5DedRG90peVLcLt4-4hymVj6YTRBzgTyKmn4CpjDkSSLKcVGf6oBvVkzHcoLRWtcI3FrkurM3Cyg80Hd0z2nicSrgSkAnKrhtE3wB6K0F5joC9DOA4b53zpBvvCu7DgptS_HWkPMM-HlNZe4ams5K3rZa2qPii8inmnCg8tRUczibD2VE4OwqLyaXk01IyxOkv8z_yj_-Q47SHMjs00HKY-iB_A7hetng</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Lyra, Wladimir</creator><creator>Johansen, Anders</creator><creator>Cañas, Manuel H.</creator><creator>Yang, Chao‐Chin</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2589-5034</orcidid><orcidid>https://orcid.org/0000-0002-3768-7542</orcidid><orcidid>https://orcid.org/0000-0002-5893-6165</orcidid></search><sort><creationdate>20230401</creationdate><title>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</title><author>Lyra, Wladimir ; Johansen, Anders ; Cañas, Manuel H. ; Yang, Chao‐Chin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c514t-959a8988f0e17c1dd15c1b1ab764a38f7906fe8a2dab035cf549e0cf4a3585d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accretion disks</topic><topic>Astronomi, astrofysik och kosmologi</topic><topic>Astronomy, Astrophysics and Cosmology</topic><topic>Astrophysics</topic><topic>Density distribution</topic><topic>Distribution functions</topic><topic>Exact solutions</topic><topic>Fysik</topic><topic>Initial mass function</topic><topic>Mass distribution</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Sciences</topic><topic>Planet formation</topic><topic>Planetary system formation</topic><topic>Planets</topic><topic>Two dimensional analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lyra, Wladimir</creatorcontrib><creatorcontrib>Johansen, Anders</creatorcontrib><creatorcontrib>Cañas, Manuel H.</creatorcontrib><creatorcontrib>Yang, Chao‐Chin</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lyra, Wladimir</au><au>Johansen, Anders</au><au>Cañas, Manuel H.</au><au>Yang, Chao‐Chin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-04-01</date><risdate>2023</risdate><volume>946</volume><issue>2</issue><spage>60</spage><pages>60-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>Pebble accretion is recognized as a significant accelerator of planet formation. Yet only formulae for single-sized (monodisperse) distribution have been derived in the literature. These can lead to significant underestimates for Bondi accretion, for which the best accreted pebble size may not be the one that dominates the mass distribution. We derive in this paper the polydisperse theory of pebble accretion. We consider a power-law distribution in pebble radius, and we find the resulting surface and volume number density distribution functions. We derive also the exact monodisperse analytical pebble accretion rate for which 3D accretion and 2D accretion are limits. In addition, we find analytical solutions to the polydisperse 2D Hill and 3D Bondi limits. We integrate the polydisperse pebble accretion numerically for the MRN distribution, finding a slight decrease (by an exact factor 3/7) in the Hill regime compared to the monodisperse case. In contrast, in the Bondi regime, we find accretion rates 1–2 orders of magnitude higher compared to monodisperse, also extending the onset of pebble accretion to 1–2 orders of magnitude lower in mass. We find megayear timescales, within the disk lifetime, for Bondi accretion on top of planetary seeds of masses 10 −6 to 10 −4 M ⊕ , over a significant range of the parameter space. This mass range overlaps with the high-mass end of the planetesimal initial mass function, and thus pebble accretion is possible directly following formation by streaming instability. This alleviates the need for mutual planetesimal collisions as a major contribution to planetary growth.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/acaf5b</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-2589-5034</orcidid><orcidid>https://orcid.org/0000-0002-3768-7542</orcidid><orcidid>https://orcid.org/0000-0002-5893-6165</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-04, Vol.946 (2), p.60
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_acaf5b
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SWEPUB Freely available online; Alma/SFX Local Collection
subjects Accretion disks
Astronomi, astrofysik och kosmologi
Astronomy, Astrophysics and Cosmology
Astrophysics
Density distribution
Distribution functions
Exact solutions
Fysik
Initial mass function
Mass distribution
Natural Sciences
Naturvetenskap
Physical Sciences
Planet formation
Planetary system formation
Planets
Two dimensional analysis
title An Analytical Theory for the Growth from Planetesimals to Planets by Polydisperse Pebble Accretion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A29%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Analytical%20Theory%20for%20the%20Growth%20from%20Planetesimals%20to%20Planets%20by%20Polydisperse%20Pebble%20Accretion&rft.jtitle=The%20Astrophysical%20journal&rft.au=Lyra,%20Wladimir&rft.date=2023-04-01&rft.volume=946&rft.issue=2&rft.spage=60&rft.pages=60-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/acaf5b&rft_dat=%3Cproquest_cross%3E2793066539%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2793066539&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_3e90e478df524de8808a399461c29a05&rfr_iscdi=true