Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing

We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calculations. The method allows very fast calculation of ray deflections when a large number of deflectors, N * , are involved, while keeping rigorous control on the errors. In particular, we apply...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2022-12, Vol.941 (1), p.80
Hauptverfasser: Jiménez-Vicente, J., Mediavilla, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 80
container_title The Astrophysical journal
container_volume 941
creator Jiménez-Vicente, J.
Mediavilla, E.
description We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calculations. The method allows very fast calculation of ray deflections when a large number of deflectors, N * , are involved, while keeping rigorous control on the errors. In particular, we apply this method, in combination with the inverse polygon mapping (IPM) technique, to quasar microlensing to generate microlensing magnification maps with very high workloads (high magnification, large size, and/or high resolution) that require a very large number of deflectors. Using FMM-IPM, the computation time can be reduced by a factor of ∼10 5 with respect to standard inverse ray shooting (IRS), making the use of this algorithm on a personal computer comparable to the use of standard IRS on GPUs. We also provide a flexible web interface for easy calculation of microlensing magnification maps using FMM-IPM (see https://gloton.ugr.es/microlensing/ ). We exemplify the power of this new method by applying it to some challenging interesting astrophysical scenarios, including clustered primordial black holes and extremely magnified stars close to the giant arcs of galaxy clusters. We also show the performance/use of FMM to calculate ray deflection for a halo resulting from cosmological simulations composed of a large number ( N ≳ 10 7 ) of elements.
doi_str_mv 10.3847/1538-4357/ac9e59
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_crossref_primary_10_3847_1538_4357_ac9e59</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2754068454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-6721fff236a912ff2712793e5e22b3fc33b24f64578daf0fa95ea8d56bc348033</originalsourceid><addsrcrecordid>eNp1kN1LwzAUxYMoOKfvPgb00bo0H03j2xhuEzZEUPAtZG2yZXRLTFrB_9529eNFn-69h3MOlx8Alym6JTnlo5SRPKGE8ZEqhGbiCAx-pGMwQAjRJCP89RScxbjtTizEAJipijVcNlVtvas0XOp640poXICzoN5trWrr9qqCC72Pdr--g2PvK1scZFg7OLfrTbJT67013-pTo6IKcGmL0FYeYufgxKgq6ouvOQQv0_vnyTxZPM4eJuNFUhAu6iTjODXGYJIpkeJ24SnmgmimMV4RUxCywtRklPG8VAYZJZhWecmyVUFojggZgqu-1wf31uhYy61rQvt_lJgzirKcMtq6UO9qH4wxaCN9sDsVPmSKZEdTduhkh072NNvIdR-xzv92Kr-VgqYylTmSvjSt7eYP27-tn26qg5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2754068454</pqid></control><display><type>article</type><title>Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing</title><source>IOP Publishing</source><source>Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Jiménez-Vicente, J. ; Mediavilla, E.</creator><creatorcontrib>Jiménez-Vicente, J. ; Mediavilla, E.</creatorcontrib><description>We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calculations. The method allows very fast calculation of ray deflections when a large number of deflectors, N * , are involved, while keeping rigorous control on the errors. In particular, we apply this method, in combination with the inverse polygon mapping (IPM) technique, to quasar microlensing to generate microlensing magnification maps with very high workloads (high magnification, large size, and/or high resolution) that require a very large number of deflectors. Using FMM-IPM, the computation time can be reduced by a factor of ∼10 5 with respect to standard inverse ray shooting (IRS), making the use of this algorithm on a personal computer comparable to the use of standard IRS on GPUs. We also provide a flexible web interface for easy calculation of microlensing magnification maps using FMM-IPM (see https://gloton.ugr.es/microlensing/ ). We exemplify the power of this new method by applying it to some challenging interesting astrophysical scenarios, including clustered primordial black holes and extremely magnified stars close to the giant arcs of galaxy clusters. We also show the performance/use of FMM to calculate ray deflection for a halo resulting from cosmological simulations composed of a large number ( N ≳ 10 7 ) of elements.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ac9e59</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Algorithms ; Astrophysics ; Black holes ; Deflectors ; Galactic clusters ; Galaxies ; Gravitational lenses ; Gravitational lensing ; Mathematical analysis ; Microlenses ; Multipoles ; Personal computers ; Quasar microlensing ; Quasars ; Ray tracing</subject><ispartof>The Astrophysical journal, 2022-12, Vol.941 (1), p.80</ispartof><rights>2022. The Author(s). Published by the American Astronomical Society.</rights><rights>2022. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-6721fff236a912ff2712793e5e22b3fc33b24f64578daf0fa95ea8d56bc348033</citedby><cites>FETCH-LOGICAL-c379t-6721fff236a912ff2712793e5e22b3fc33b24f64578daf0fa95ea8d56bc348033</cites><orcidid>0000-0001-7798-3453 ; 0000-0003-1989-6292</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ac9e59/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,780,784,864,27923,27924,38889,53866</link.rule.ids></links><search><creatorcontrib>Jiménez-Vicente, J.</creatorcontrib><creatorcontrib>Mediavilla, E.</creatorcontrib><title>Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calculations. The method allows very fast calculation of ray deflections when a large number of deflectors, N * , are involved, while keeping rigorous control on the errors. In particular, we apply this method, in combination with the inverse polygon mapping (IPM) technique, to quasar microlensing to generate microlensing magnification maps with very high workloads (high magnification, large size, and/or high resolution) that require a very large number of deflectors. Using FMM-IPM, the computation time can be reduced by a factor of ∼10 5 with respect to standard inverse ray shooting (IRS), making the use of this algorithm on a personal computer comparable to the use of standard IRS on GPUs. We also provide a flexible web interface for easy calculation of microlensing magnification maps using FMM-IPM (see https://gloton.ugr.es/microlensing/ ). We exemplify the power of this new method by applying it to some challenging interesting astrophysical scenarios, including clustered primordial black holes and extremely magnified stars close to the giant arcs of galaxy clusters. We also show the performance/use of FMM to calculate ray deflection for a halo resulting from cosmological simulations composed of a large number ( N ≳ 10 7 ) of elements.</description><subject>Algorithms</subject><subject>Astrophysics</subject><subject>Black holes</subject><subject>Deflectors</subject><subject>Galactic clusters</subject><subject>Galaxies</subject><subject>Gravitational lenses</subject><subject>Gravitational lensing</subject><subject>Mathematical analysis</subject><subject>Microlenses</subject><subject>Multipoles</subject><subject>Personal computers</subject><subject>Quasar microlensing</subject><subject>Quasars</subject><subject>Ray tracing</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><recordid>eNp1kN1LwzAUxYMoOKfvPgb00bo0H03j2xhuEzZEUPAtZG2yZXRLTFrB_9529eNFn-69h3MOlx8Alym6JTnlo5SRPKGE8ZEqhGbiCAx-pGMwQAjRJCP89RScxbjtTizEAJipijVcNlVtvas0XOp640poXICzoN5trWrr9qqCC72Pdr--g2PvK1scZFg7OLfrTbJT67013-pTo6IKcGmL0FYeYufgxKgq6ouvOQQv0_vnyTxZPM4eJuNFUhAu6iTjODXGYJIpkeJ24SnmgmimMV4RUxCywtRklPG8VAYZJZhWecmyVUFojggZgqu-1wf31uhYy61rQvt_lJgzirKcMtq6UO9qH4wxaCN9sDsVPmSKZEdTduhkh072NNvIdR-xzv92Kr-VgqYylTmSvjSt7eYP27-tn26qg5Q</recordid><startdate>20221201</startdate><enddate>20221201</enddate><creator>Jiménez-Vicente, J.</creator><creator>Mediavilla, E.</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7798-3453</orcidid><orcidid>https://orcid.org/0000-0003-1989-6292</orcidid></search><sort><creationdate>20221201</creationdate><title>Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing</title><author>Jiménez-Vicente, J. ; Mediavilla, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-6721fff236a912ff2712793e5e22b3fc33b24f64578daf0fa95ea8d56bc348033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Astrophysics</topic><topic>Black holes</topic><topic>Deflectors</topic><topic>Galactic clusters</topic><topic>Galaxies</topic><topic>Gravitational lenses</topic><topic>Gravitational lensing</topic><topic>Mathematical analysis</topic><topic>Microlenses</topic><topic>Multipoles</topic><topic>Personal computers</topic><topic>Quasar microlensing</topic><topic>Quasars</topic><topic>Ray tracing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jiménez-Vicente, J.</creatorcontrib><creatorcontrib>Mediavilla, E.</creatorcontrib><collection>IOP Publishing</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jiménez-Vicente, J.</au><au>Mediavilla, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2022-12-01</date><risdate>2022</risdate><volume>941</volume><issue>1</issue><spage>80</spage><pages>80-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>We introduce the use of the fast multipole method (FMM) to speed up gravitational lensing ray tracing calculations. The method allows very fast calculation of ray deflections when a large number of deflectors, N * , are involved, while keeping rigorous control on the errors. In particular, we apply this method, in combination with the inverse polygon mapping (IPM) technique, to quasar microlensing to generate microlensing magnification maps with very high workloads (high magnification, large size, and/or high resolution) that require a very large number of deflectors. Using FMM-IPM, the computation time can be reduced by a factor of ∼10 5 with respect to standard inverse ray shooting (IRS), making the use of this algorithm on a personal computer comparable to the use of standard IRS on GPUs. We also provide a flexible web interface for easy calculation of microlensing magnification maps using FMM-IPM (see https://gloton.ugr.es/microlensing/ ). We exemplify the power of this new method by applying it to some challenging interesting astrophysical scenarios, including clustered primordial black holes and extremely magnified stars close to the giant arcs of galaxy clusters. We also show the performance/use of FMM to calculate ray deflection for a halo resulting from cosmological simulations composed of a large number ( N ≳ 10 7 ) of elements.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ac9e59</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7798-3453</orcidid><orcidid>https://orcid.org/0000-0003-1989-6292</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2022-12, Vol.941 (1), p.80
issn 0004-637X
1538-4357
language eng
recordid cdi_crossref_primary_10_3847_1538_4357_ac9e59
source IOP Publishing; Directory of Open Access Journals; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Algorithms
Astrophysics
Black holes
Deflectors
Galactic clusters
Galaxies
Gravitational lenses
Gravitational lensing
Mathematical analysis
Microlenses
Multipoles
Personal computers
Quasar microlensing
Quasars
Ray tracing
title Fast Multipole Method for Gravitational Lensing: Application to High-magnification Quasar Microlensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T15%3A50%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fast%20Multipole%20Method%20for%20Gravitational%20Lensing:%20Application%20to%20High-magnification%20Quasar%20Microlensing&rft.jtitle=The%20Astrophysical%20journal&rft.au=Jim%C3%A9nez-Vicente,%20J.&rft.date=2022-12-01&rft.volume=941&rft.issue=1&rft.spage=80&rft.pages=80-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ac9e59&rft_dat=%3Cproquest_cross%3E2754068454%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2754068454&rft_id=info:pmid/&rfr_iscdi=true