To Rain or Not to Rain: Correlating GOES Flare Class and Coronal Rain Statistics
Post-flare arcades are well-known components of solar flare evolution, which have been observed for several decades. Coronal rain, cascades of catastrophically cooled plasma, outlines the loops and provides eye-catching evidence of the recent flare. These events are acknowledged to be common, but th...
Gespeichert in:
Veröffentlicht in: | The Astrophysical journal 2022-11, Vol.939 (1), p.21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Post-flare arcades are well-known components of solar flare evolution, which have been observed for several decades. Coronal rain, cascades of catastrophically cooled plasma, outlines the loops and provides eye-catching evidence of the recent flare. These events are acknowledged to be common, but the scientific literature does not include any statistical overview documenting just how common the phenomenon actually is. This study reviews Solar Dynamics Observatory Atmospheric Imaging Assembly (SDO AIA) observations of 241 flares collected from the Space Weather Prediction Center database between 2011 and 2018. The flares cover the entire strength range of the C, M, and X GOES classes, and are distributed evenly across the SDO-observed majority of Solar Cycle 24. We find that post-flare arcade rain occurs for nearly all X- and most M-class flares, but that it tapers off rapidly within C-class flares. There appears to be a cut-off point around C5, below which the occurrence of post-flare arcade rain drops significantly. There is also a general positive correlation between GOES class and the average duration of post-flare rain events. Post-flare arcade rain events in X- and M-class flares appear to track with the sunspot number, providing a potential new tool for estimating, if not predicting, solar cycle strength. Furthermore, arcades are observed to persist for up to several days after the originating flare, transitioning from hosting post-flare rain to typical quiescent active region condensations. These results open up further avenues for future research, including new methods to estimate energy deposition and to gain greater insight into steady active region heating. |
---|---|
ISSN: | 0004-637X 1538-4357 |
DOI: | 10.3847/1538-4357/ac94d7 |